Skip to main content
Log in

On a Complex Randers Space

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

In the present paper, a complex Randers space with the metric \( F = \alpha + \varepsilon \left| \beta \right| + k\frac{{\left| \beta \right|^{2} }}{\alpha },\varepsilon ,k \ne 0 \) is introduced and expressions for fundamental metric tensor, angular metric tensor, Chern–Finsler connection coefficients and curvature are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Finsler P (1951) Uber Kurven and flacken in Allgemeinen Raumen (dissertation Gottingen 1918). Springer, Berlin

    MATH  Google Scholar 

  2. Rizza G (1963) Strutture di Finsler di Tipo quasi hermitiano. Riv Mat Univ Parma 4:83–106

    MathSciNet  MATH  Google Scholar 

  3. Kobayashi S (1967) Distance, holomorphic mappings and the Schwarz lemma. J Math Soc Jpn 19(4):481–485

    Article  MathSciNet  MATH  Google Scholar 

  4. Abate M, Patrizio G (1994) Finsler metrics: a global approach with applications to geometric function theory. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Shen Z, Yildirim GC (2008) On a class of projectively Flat metric with constant Flag curvature. Can J Math 60:443–456

    Article  MathSciNet  MATH  Google Scholar 

  6. Aldea N, Munteanu G (2009) On complex Finsler spaces with Randers metric. J Korean Math Soc 46(5):949–966

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao D, Chern SS, Shen Z (2000) An introduction to Riemann–Finsler geometry. Graduate Texts in Mathematics 200. Springer, New York

    Book  Google Scholar 

  8. Bao D, Robles C, Shen Z (2004) Zermelo navigation on Riemannian manifolds. J Differ Geom 66(3):377–435

    Article  MathSciNet  MATH  Google Scholar 

  9. Yasuda H, Shimada H (1977) On Randers spaces of scalar curvature. Rep Math Phys 11(3):347–360

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Matsumoto M (1989) Randers spaces of constant curvature. Rep Math Phys 28(2):249–261

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Abate M, Patrizio A (1994) Finsler metric—a global approach with applications to geometric function theory, Lecture Notes in Mathematics, vol 1591. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Aikou T (2003) Projective flatness of complex Finsler metrics. Publ Math Debrecen 63(3):343–362

    MathSciNet  Google Scholar 

  13. Munteanu G (2004) Complex spaces in Finsler, Lagrange and Hamilton geometries. Fundamental Theories of Physics. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  14. Spir A (2001) The structure equations of a complex Finsler manifold. Asian J Math 5(2):291–326

    Article  MathSciNet  Google Scholar 

  15. Aldea N, Munteanu G (2006) (α, β)-complex Finsler metrices. In: Proceedings of the 4th International Colloquium “Mathematics in Engineering and National Physics”, Burcharet, Romania, pp 1–6

  16. Aldea N, Munteanu G (2006) On the geometry of Complex Randers space. In: Proceedings of the 14th Nat. Sem. On Finsler, Lagrange and Hamilton spaces, Brasov, pp 1–8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Pandey, P.N. On a Complex Randers Space. Natl. Acad. Sci. Lett. 42, 123–130 (2019). https://doi.org/10.1007/s40009-018-0700-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-018-0700-8

Keywords

Mathematics Subject Classification