Skip to main content

Advertisement

Log in

Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Numerous adverse immune reactions after hyaluronan (HA) applications have been reported, highlighting the need for investigating the differences in metabolism and pharmacokinetics between homeostasis and tissue injury and inflammation conditions. Understanding the mechanisms underlying the pro- or anti-inflammatory activity of HA depending on its fragment size and the association between HA fragment size and its pharmacokinetics and therapeutic properties is critical to its use without adverse immune reactions.

Area covered

This paper discusses the differential synthesis and degradation of HA depending on physiological conditions and HA fragment size and the strategies to minimizing adverse immune reactions. Given HA is an important skin component, its skin penetration, dermal pharmacokinetics and differential effects of native HA and fragments on wound healing and tissue regeneration are discussed.

Expert opinion

In ideal homeostatic conditions, the proportion of high-molecular-weight HA (HMW HA; ~106 Da, 1.24 M Da) is high, and it rarely binds with immune cells. However, tissue injury and inflammation lead to the generation of small HA fragments (~ 100 kDa and 10 kDa), which exhibit inflammatory, carcinogenic, and tissue fibrotic properties. As HA is an indispensable extracellular matrix (ECM) component of skin, specific skin absorption enhancement induced by conversion of the α-helix to a ß-sheet structure of HA and hydration of stratum corneum weakens the SC barrier. Given different cell types react differently to cellular stresses. Currently, no general guideline to prognosticating serious adverse reactions after HA application exists. Therefore, we believe that normalization of HA metabolism and an in vitro model evaluating the specific inflammatory cytokine profile and gene expression level in macrophage cell lines of tested tissue after HA exposure would help in devising a clinical strategy to minimize the serious adverse reactions after HA application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe Y, Seino S, Kurihara H, Madoka K, Tokudome Y (2022) 2- kDa hyaluronan ameliorates human facial wrinkles through increased dermal collagen density related to promotion of collagen remodeling. J Cosmet Dermatol. org/10.111/jocd.15097

  • Alijotas-Reig J, Garcia-Gimenez V (2008) Delayed immune-mediated adverse effects related to hyaluronic acid and acrylic hydrogel der-mal fillers: clinical findings, long-term follow up and review of the literature. J Eur Acad Dermatol Venereol 22:150–161

    CAS  PubMed  Google Scholar 

  • Al-Shraim M, Jaragh M, Geddie W (2007) Granulomatous reaction to injectable hyluronic acid (restylane) diagnosed by fine needle biopsy. J Clin Pathol 60:1060–1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Anduljabbar MH, Basendwh M (2016) Complications of hyaluronic acid fillers and their managements. J Dermatology & Dermatologic Surgery 20:100–106

    Article  Google Scholar 

  • Argen UN, Tammi M, Tammi R (1995) Hydrocortisone regulation of hyaluronan metabolism in human skin organ culture. J Cell Physiol 164:240–248

    Article  Google Scholar 

  • Argen UM, Tammi M, Ryynanen M et al (1997) Developmentally programmed expression of hyaluronan in human skin and its appendages. J Invest Dermatol 109:219–224

    Article  Google Scholar 

  • Aya KL, Stern R (2014) Hyaluronan in wound healing: rediscovering a major player. Wound Rep Reg 22:579–593

    Article  Google Scholar 

  • Balaji S, Wang X, King A, Louis D, Le, Bhattachara SS et al (2017) Interleukin-10 mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J 31:868881

    Article  Google Scholar 

  • Balazs, Endre A (1979) Ultrapure Hyaluronic Acid and the Use Thereof U.S. Patent 4,141,973

  • Barry BW (1987) Mode of action of penetration enhances in human skin. J control Rel 6:85–97

    Article  CAS  Google Scholar 

  • Beleznay K, Carruthers JD, Carruthers A, Mummert ME, Humphrey S (2015) Delayed-onset nodules secondary to a smooth cohesive 20 mg/mL hyaluronic acid filler: cause and management. Dermatol Surg 41(8):929–939

    Article  CAS  PubMed  Google Scholar 

  • Bernard G, Auger M, Soucy J, Pouiot R (2007) Physical characterization of the stratum corneum of an in vitro psoriatric skin model by ATR-FTIR and raman spectroscopies. Biochim Biophys Acta 1770:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Bitterman-Deutsch O, Kogan L, Nasser F (2015) Delayed immune mediated adverse effects to hyaluronic acid fillers: report to five cases and review of the literature. Dermatology Rep 7(1):5851

    Google Scholar 

  • Boas NF (1949) Isolation of hyaluronic acid from the cock’s comb. J Biol Chem 181:573–575

    Article  CAS  PubMed  Google Scholar 

  • Brown MB, Jones SA (2005) Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. Eur Acad Dermatology Venereol JEADV 19:308–318

    Article  CAS  Google Scholar 

  • Brown TJ, Alcorn D, Fraser JRE (1999) Absorption of hyaluronan applied to the surface of intact skin. J Invest dermatology 113(5):740–746

    Article  CAS  Google Scholar 

  • Bukhari SNA, Roswandi NL, Waqas M et al (2018) Hyaluronic acid, a promising skin rejuvenating biomedicine: a review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int J Biol Macromol 120(120):1682–1695

    Article  CAS  PubMed  Google Scholar 

  • Cavallinin M, Gazzola R, Metalla M, Valenti L (2013) The role of hyaluronidase in the treatment of complications from hyaluronic acid dermal fillers. Am Soc Aesthetic Plast Surg AICPE 33(8):1167–1174

    Article  Google Scholar 

  • Chen WYJ, Giovanni A (1999) Functions of hyaluronan in wound repair.7:79–88

  • Cho Lee AR (2019) Microneedle-mediated delivery of cosmeceutically relevant nucleoside and peptides in human skin: challenges and strategies for dermal delivery. J Pharm Invest 49:587–601

    Article  Google Scholar 

  • Choi JT, Park SJ, Park JH (2018) Microneedles containing cross-linked hyaluronic acid particulates for control of degradation and swelling behaviour after administration into skin. J Drug Target. https://doi.org/10.1080/1061186X.2018.1435664

  • Christensen L, Breitning V, Jannssen M, Vuust J, Hogdall E (2005) Adverse reactions to injectable soft tissue permanent fillers. Aesth Plast Surg 29:34–48

    Article  Google Scholar 

  • Cilurlzo F, Vistoli G, Gennari CGM, Selmin F et al (2014) The role of conformational profile of polysaccharide on skin penetration: the case of hyaluronan and its sulfates. Chem & Biodiversity 11:551–561

    Article  Google Scholar 

  • Collins SL, Black KE, Chan-Li Y, Ahn YH, Cole P et al (2011) Hyaluronan fragments promote inflammation by down-regulating the anti-inflammatory A2a receptor. Am J Respir Cell Mol Biol 45:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csoka B, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20:499–508

    Article  CAS  PubMed  Google Scholar 

  • Cyphert JM, Trempus CS, Garantziotis S (2015) Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol 563818. https://doi.org/10.1155/2015/563818

  • Dahl LB, kimpton WG, Cahill RN, Brown TJ, Fraser RE (1989) The origin and fate of hyaluronan in amniotic fluid. J Dev Physiol 12:209–218

    CAS  PubMed  Google Scholar 

  • Dahl LB, Dahl IMS, Engstrom-Laurent A, Granath K (2015) Concentration and molecular weight sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis 44:817–822

    Article  Google Scholar 

  • David-Raoudi M, Tranchepain F, Deschrevel B, Vincent J, Bogdanowicz P et al (2008) Differential effects of hyaluronan and its fragments on fibroblast: relation to wound healing. Wound Rep Regen 16:274–287

    Article  Google Scholar 

  • De Jong WH, Jennen D, Keizers P, Hodemaekers H, Vermeulin J et al (2022) Evaluation of adverse effects of resorbable hyaluronic acid fillers: determination on macrophage responses. Int J Mol Sci 23:7275–7292. https://doi.org/10.3390/ijms23137275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dipiro JT, Spruill WJ, Wade WE, Bloulin R, Pruemer J (1996) Concepts in clinical pharmacokinetics. Am Soc of Health Systems Pharmacists, pp 24–25

  • Doherty MM, Hughe PJ, Korszniak NV, Charman WN (1995) Prolonger of lidocaine –induced epidural anesthesia by medium molecular weight hyaluronic acid formulations: pharmacodynmics and pharmacokinetic studies in the rabbit. Anesth Analg 80:740–746

    CAS  PubMed  Google Scholar 

  • Donelan W, Dominguez-Gutierrez PR, Kusmartsev S (2022) Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor associated immune suppression. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2022.971278

  • Engstrom-Laurent A, Laurent UBG, Lilja K, Laurent TC (1985) Concentration of sodium hyaluronate in serum, scand. J Clin Lab Invest 45:497–504

    Article  CAS  Google Scholar 

  • Erickson M, Stern R (2012) Chain gangs: New aspects of hyaluronan metabolism. Biochem 893947

  • Essendoubi M, Gobinet C, Reynaud R, Angiboust JF, Manfait M, Piot O (2016) Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res and Tech 22:55–62

    Article  CAS  Google Scholar 

  • Evarard C, Lambert de Rouvroit C, Poumay Y (2021) Epidermal hyaluronan in barrier alteration-related disease. Cells 10:3096. https://doi.org/10.3390/cells10113096

    Article  Google Scholar 

  • Fallacara A, Baldini E, manfredini, Vertuani S (2018) Hyaluronic acid in the third millennium. Polymers (Basel) 10(7):701. https://doi.org/10.3390/polym10070701

  • Fraser JRE, Laurent TC, Pertoft H, Baxter E (1981) Plasma clearance, tissue distribution and meta bolism of hyaluronic acid injected intravenously in the rabbit. Biochem J 200:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ghatak S, Misra S, Toole BP (2002) Hyaluronan oligosaccharides inhibit anchorage0independent growth of tumor cells by suppressing the phosphoinositude 3-kinase/Akt cell survival pathway. J Biol Chem 277:38013–38020

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P (1994) The role of hyaluronic acid (hyaluronan) in health and disease: interactions with cells, cartilage and components of synovial fluid. Clin Exp Rheumatol 12(1):75–82

    CAS  PubMed  Google Scholar 

  • Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju P, Todd L, Shetye S, Monslow J, Pure E (2019) CD-44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol 75–76:314–330. https://doi.org/10.1016/j.matbio.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  • Hascall VC, Laurent TC (1997) Hyaluronan: structure and physical properties. Glycoforum: Science of Hyaluronan Today. Available from: http://www.glycoforum.gr.jp/science/hyaluronan/HA01/HA01E.htm

  • Hertel W, Peschel G, Ozegowski JH, Muller PJ (2006) Inhibitory effects of triterpenes and flavonoids on the enzymatic activity of hyaluronic acid. Archives of Pharmaceutical Chemistry and Life Sciences 339:313–318

    Article  CAS  Google Scholar 

  • Holmes MWA, Bayliss MT, Muir H (1988) Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem J 250:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homsy A, Ruegg EM, Jandus P, Pittet-Cuenod B, Modarressi A (2017) Immunological reaction after facial hyaluronic acid injection. Case Rep Plast Surg Hand Surg 4(1):68–72

    Article  Google Scholar 

  • Iocono JA, Colleran KR, Remick DG, Gillespie BW, Ehrlich HP et al (2000) Interleukin-8 levels and activity in delayed-healing human thermal wounds. Wound Repair Regen. https://doi.org/10.1046/j.1524-475x.2000.00216.x

    Article  PubMed  Google Scholar 

  • Jang MJ, Bae SK, Jung YS, Kim JC, Park ST et al (2021) Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model. Biomed Mater 16:045013. https://doi.org/10.1088/1748-605X/abf1a8

    Article  CAS  Google Scholar 

  • Jardin L, Louis H, Frost GI (2012) A comprehensive model of hyaluronan turnover in the mouse. Matrix Biol 31:81–89

    Article  Google Scholar 

  • Jiang D, Liang J, Fan J, Yu S, Chen S et al (2005) Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med 11:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Johnson P, Arif AA, Lee -Sayer SM, Dong Y (2018) Hyaluronan and its interactions with immune cells in the healthy and inflamed lung. Frontiers in Immmunology 9: article 2787. https://doi.org/10.3389/fimmu.2018.02787

  • Jo IH, Bhang SH (2022) Nano-sized materials for tissue regeneration. Tissue Eng Regen Med 19:203–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan Ar, Racine RR, Henning MJ, Lokeshwar VB (2015) The role of CD 44 in disease pathology and targeted treatment. Front Immunol 6:182

    PubMed  Google Scholar 

  • Jung JH, Jin SG (2021) Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Invest 51:503–517

    Article  Google Scholar 

  • Kablik J, Monhett GD, Yu L, Chang G, Gershkovich J (2009) Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg 35:302–312

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa H, Mitsuo N, Matsumoto H, Satoh T, Akagi M et al (1985) Hyaluronidase-inhibitory and anti-allergic activities of the photoirradiated products of tranilast. Chem Pharm Bull 33:3738–3744

    Article  CAS  Google Scholar 

  • Kakegawa H, Matsumoto H, Satoh T (1988) Inhibitory effects of hydrangenol derivatives on the activation of hyaluronidase and their antiallergic activities. Planta Med 54:385–389

    Article  CAS  PubMed  Google Scholar 

  • Kaul A, Short WD, Wang X, Keswani SG (2021) Hyaluronidases in human diseases. Int J Mol Sci 22:3204. https://doi.org/10.3390/ijms22063204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavasi R-M, Berdiaki A, Spyridaki I, Corsini E, Tsatsakis A et al (2017) HA metabolism in skin homeostasis and inflammatory disease. 101:128–138

  • Kendall FE, Heidelberger M, Dawson MH (1937) A serologically inactive polysaccharide elaborated by mucoid strains of group a hemolytic streptococcus. J Biol Chem 118:61–69

    Article  CAS  Google Scholar 

  • Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ et al (2008) Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol Immunol 45(9):2537–2547

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Maeshima T, Kubota T, Kurihara H, Masuda Y et al (2016) Absorption of orally administered Hyaluronan. J Med food 19(12):1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Klein AW (2004) Granulomatous foreign body reaction against hyaluronic acid. Dermtol Surg 30:1070

    Google Scholar 

  • Kobayashi Y, Okamoto A, Nishinari K (1994) Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 31:235–244

    Article  CAS  PubMed  Google Scholar 

  • Lafaille P, Benedetto A (2010) Fillers: contraindications, side effects and precautions. Cutan Aesthet Surg 3(1):16–19

    Article  Google Scholar 

  • Laurent TC, Fraser JR (1986) The properties and turnover of hyaluronan. Ciba Found Symp. 124:9–29

  • Laurent CT, Fraser JR (1992) Hyaluronan FASEB J 6:2397–2404

    Article  CAS  PubMed  Google Scholar 

  • Laurent UBG, Tengblad A (1980) Determination of hyaluronate in biological samples by a specific radioassay technique. Anal Biochem 109:386–394

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC, Laurent UB, Fraser JR (1996) Serum hyaluronan as a disease marker. Ann Med 28:241–253

    Article  CAS  PubMed  Google Scholar 

  • Lebel L (1991) Clearance of hylauronan from the circulation. Adv Drug Deliv Rev 7(2):221–235

  • Lee AR, Tojo K (eds) (2001) An experimental approach to study the binding properties of vitamin E (alpha-tocopherol) during hairless mouse skin permeation. Chem Pharm Bull 49(6):659 – 63. https://doi.org/10.1248/cpb.49.659

  • Lee BM, Park SJ, Noh I, Kim CH (2021) The effects of the molecular weights of hyaluronic acid on the immune responses. Biomaterials Res. https://doi.org/10.1186/s40824-021-00228-4

    Article  Google Scholar 

  • Lee-Sayer SS, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P (2015) The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 6:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepperdinger G, Mullegger J, Kreil G (2001) Hyal2—Less active, but more versatile? Matrix Biol 20:509–514

    Article  CAS  PubMed  Google Scholar 

  • Leung A, Crombleholme TM, Keswani SG (2012) Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr 24:371–378. https://doi.org/10.1097/MOP.0b013e3283535790

    Article  PubMed  PubMed Central  Google Scholar 

  • Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T (2016) Hyaluronic acid in inflammation and tissue regeneration. Wounds 28(3):78–88

    PubMed  Google Scholar 

  • Lokeshwar VB, Selzer MG (2000) Differences in Hyaluronic Acid-mediated functions and signaling in arterial, Microvessel, and vein-derived human endothelial cells. J Biol Chem 275:27641–27649

    Article  CAS  PubMed  Google Scholar 

  • Martin E (2016) Hyaluronan: more than just a wrinkle filler. Glycobiology 26(6):553–559

    Article  Google Scholar 

  • Massone C, Horn M, Kerl H et al (2009) Foreign body granuloma due to Matridex injection for cosmetic purposes. Am J Dermatopathol 31:197–199

    Article  PubMed  Google Scholar 

  • Mckee C, Penno M, Cowman M, et al (1996) Noble P. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD 44. J Clin Invest98:2403–2413

  • Meyer L, Palmer J (1934) The polysaccharide of the vitreous humour. Biol Chem 107:629–634

    Article  CAS  Google Scholar 

  • Mio K, Stern R (2002) Inhibitors of the hyaluronidases. Matrix Biol 21:31–37

    Article  CAS  PubMed  Google Scholar 

  • Mummert ME (2005) Immunologic roles of hyaluronan. Immuno Res 31(3):189–205

    Article  CAS  Google Scholar 

  • Neuman MG, Cohen LB, Nanau RM (2016) Hyaluronic acid as a non-invasive biomarker of liver fibrosis. Clin Biochem 49:302–315

    Article  CAS  PubMed  Google Scholar 

  • Noble PW (2002) Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 21:25–29

    Article  CAS  PubMed  Google Scholar 

  • Noh I, Lee K, Rhee YS (2022) Microneedle systems for delivering nucleic acid drugs. J Pharm Invest 52:273–292

    Article  CAS  Google Scholar 

  • Owczarczyk-Saczonek A, Zdanowska N, Wygonowska E, Placek W (2021) The immunogenicity of hyaluronic fillers and its consequences. Clin Cosmet Invest Dermatology 14:921–934

    Article  CAS  Google Scholar 

  • Pandey MS, Harris EN, Weigel JA, Weigel PH (2008) The cytoplasmic domain of the hyaluronan receptor for endocytosis (HARE) contains multiple endocytic motifs targeting coated pit-mediated internalization. J Biol Chem 283(31):21453–21461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papalonstantinou E, Roth M, Kakariulakis G (2012) Hyaluronic acid: a key molecule in skin aging. 4:253–2583

  • Papakanstantinou E, Bonovolias I, Roth M, Tamm m, Schumann D et al (2019) Serum levels of hyaluronic acid are associated with COPD severity and predict survival. Eur respiratory J. https://doi.org/10.1183/13993003.01183-2018

    Article  Google Scholar 

  • Park S, Lim LT (2014) Orbital inflammation secondary to delayed hypersensitivity reaction to Sub-Tenon’s hyaluronidase. Sem in Ophthalmology 29(2):57–58

    Article  Google Scholar 

  • Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Frontiers in immunology. https://doi.org/10.3389/fimmu.2014.00101

  • Philipp-Dormston WG, Hilton S, Nathan M (2014) A prospective, open-label, multicenter, observational, postmarket study of the use of a 15 mg/ml hyaluronic acid dermal filler in the lips. J Cosmet Dermatol 13(2):125–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Poole AR, Witter J, Roberts N, Piccolo F, Brandt R, Paquin J, Baron M (1990) Inflammation and cartilage metabolism in rheumatoid arthritis: studies of the blood markers hyaluronc acid, orosomucoid amd keratin sulfate. Arthritis Rheum 33:790–799

    Article  CAS  PubMed  Google Scholar 

  • Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA (2015) High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1(7):481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed RK, Lilja K, Laurent TC (1988) Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand 134:405–411

    Article  CAS  PubMed  Google Scholar 

  • Robert L, Robert AM, Renard G (2010) Biological effects of hyaluronan in connective tissues, eye, skin, venous wall. Role in aging Pathologie Biologie 58(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli M, Belmontesi M (2008) Hyaluronic acid based fillers: theory and practice. Clin Dermatol 26:123–159

    Article  PubMed  Google Scholar 

  • Romo M, Lopez-Vicario C, Perez-Romero N, Casulleras M, Isabel A et al (2022) Small fragments of hyaluronan are increased in individuals with obesity and contribute to low-grade inflammation through TLR-mediated activation of innate immune cells. Intl J obesity 45:1969–1969

    Google Scholar 

  • Ronny R, Mark ME, Hyaluronan Endocytosis (2012) : Mechanisms of Uptake and Biological Functions. In MolecularRegulation of Endocytosis; Chap. 14; Ceresa, B., Ed.; IntechOpen: London, UK,

  • Rooney P, Kumar S, Ponting J, Wang M (1995) The role of hyaluronan in tumour neovascularization (review). Int J Cancer 60(5):632–636

    Article  CAS  PubMed  Google Scholar 

  • Rowley JE, Amargant F, Zhou LT, Galligos A, Simon LE et al (2020) Low molecular weight hyaluronan induces an inflammatory response in ovarian stromal cells and impairs gamete development in vitro. Int J Mol Sci 21(3):1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppert SM, Hawn TR, Arrigoni A, Wight TN, Bollyky PL (2014) Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res 58(2–3):186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rwei SP, Chen SW, Mao CF, Fang HW (2008) Viscoelasticity and wearability of hyaluronate solutions. Biochem Eng J 40:211–217

    Article  CAS  Google Scholar 

  • Sadeghpour M, Quatrano NA, BOTANI LM et al (2019) Delayed-onset nodules to differentially crosslinked hyaluronic acids: comparative incidence and risk assessment. Dermatol Surg 45(80):1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Shigefuji M, Tokudome Y (2020) Nanoparticulate of hyaluronic acid: a new skin penetration enhancing polyion complex formulation:mechanism and future potential. Materialia. https://doi.org/10.1016/j.mtla.2020.100879

    Article  Google Scholar 

  • Sidgwick GP, Iqbal SA, Bayat A (2013) Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin. Exp Derm 22:377–379

    Article  CAS  PubMed  Google Scholar 

  • Singampalli KL, Balaji S, Wang X, Parikh UM, Kaul A et al (2020) The role of an IL-10/hyaluronan axis in dermal wound healing, frontiers in cell and developmental biology. 8: article 636. https://doi.org/10.3389/fcell.2020.00636

  • Stair-Nawy S, Csoka AB, Stern R (1999) Hyaluronidase expression in human skin fibroblasts. Biochem Biophys Res Commun 266:268–273

    Article  CAS  PubMed  Google Scholar 

  • Österlin S (1977) On the molecular biology of the vitreous in the aphakic eye Acta Ophthalmol (1977) 55:353–61

  • Stern R (2004) Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol 83(7):317–325

    Article  CAS  PubMed  Google Scholar 

  • Stern R (2008) Hyaluronidases in cancer biology. Seminars in Cancer Biol 18:275–280

    Article  CAS  Google Scholar 

  • Stern R (2014) Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol 83(7):317–325

    Article  Google Scholar 

  • Stern R, Jedrzejas M (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem rev 106:818–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715

    Article  CAS  PubMed  Google Scholar 

  • Sugahara KN, Murai t, Kawashima N, Saya H H et al (2003) Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem 278(34):32259–32265

    Article  CAS  PubMed  Google Scholar 

  • Sundaram H, Voigts B, Beer K, Meland M (2010) Comparison of the rheological properties of viscosity and elasticity in two categories of soft-tissue fillers: calcium hydroxylapatite and hyaluronic acid. Dermatol Surg 36:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Tammi M (1998) Hyaluronan in the epidermis. Glyco forum 2:A41–A15

    Google Scholar 

  • Tammi R, Ripellino JA, Margolis RU, Maibach HI, Tammi M (1989) Hyaluronate accumulation in human epidermis treated with retinoic acid in skin organ culture. J Invest Dermatol 92:326–332

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Säämänen AM, Maibach HI, Tammi M (1991) Degradation of newly synthesized high molecular mass hyaluronan in the epidermal and dermal compartments of human skin in organ culture. J Invest dermatology 97(1):126–130

    Article  CAS  Google Scholar 

  • Tammi R, Ågren UM, Tuhkanen A-L, Tammi M (1994) Hyaluronan metabolism in skin. Prog Histochem Cytochem 29:1–81

    Article  CAS  PubMed  Google Scholar 

  • Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK (2019) Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS 286(15):2883–2908

    Article  CAS  Google Scholar 

  • Tengblad A, Laurent UBG, Lilja K, Cahill RNP, Engström-Laurent A, Fraser JRE et al (1986) Concentration and relative molecular mass of hyaluronate in lymph and blood. Biochem J 236:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobiishi M, Sayo T, Yoshida H, Kusaka A, Kawabata K et al (2011) Changes in epidermal hyaluronan metabolism following UVB irradiation. J Dermatol Sci. https://doi.org/10.1016/j.jdermsci.2011.06.006

    Article  PubMed  Google Scholar 

  • Tokudome Y, Komi T, Omara A, Sekita M (2018) A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method. Sci Rep 8:2336

    Article  PubMed  PubMed Central  Google Scholar 

  • Unn AL, Heavner JE, Racz G et al (2010) Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther 10:127–131

    Article  Google Scholar 

  • van Zuijlen PPM, Ruurda JJB, van Veen HA, van Marle J, van Trier AJM et al (2003) Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns 29:423–431. https://doi.org/10.1016/s0305-4179(03)00052-4

    Article  PubMed  Google Scholar 

  • Vuorio E, Einola S, Hakkarainen S, Penttinen R (1982) Synthesis of underpolymerized hyaluronic acid by fibroblasts cultured from rheumatoid and non-rheumatoid synovitis. Rheumatol Int 2(3):97–102

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hori K, Ding J, Huang Y, Kwan P et al (2011) Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 226:1265–1273. https://doi.org/10.1002/jcp.22454

    Article  CAS  PubMed  Google Scholar 

  • Weindl G, Schaller M, Schafer-Korting M, Korting HC (2004) Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects. Skin Pharmacol Physiol 17:207–213

    Article  CAS  PubMed  Google Scholar 

  • West DC, Hampson IN, Arnold F, Kumar S (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 228(4705):1324–1326

    Article  CAS  PubMed  Google Scholar 

  • Witting M, Boreham A, Brodwolf R, Vavrova K, Alexiev U, Friess W, Hedtrich S (2015) Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomolecules. Mol Pharm 12:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Ito T, Tawada A, Maeda H, Yamanokuchi H et al (2002) Effect of hyaluronan oligosaccharides on the expression of heat shock protein. J Biol Chem 277:17308–17314

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Sai S, Marumo K, Tanaka T, Itano N et al (2004) Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in the synovium of knees in osteoarthritis and rheumatoid arthritis by quantitative real-time reverse transcriptase polymerase chain reaction. Arthritis Res Ther 6(6):R514–R520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Nagaoka A, Kusaka-Kikushima A, Tobiishi VM, Kawabata K et al (2013) KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci USA 110:5612–5617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Yamazaki K, Komiya A, Aoki M, Nakamura T et al (2019) Inhibition of HYBID (KIAA1199)-mediated hyaluronan degradation and anti-wrinkle effect of Geranium thunbergii extract. J Cosmet Dermatol 18(4):1052–1060

    Article  PubMed  Google Scholar 

  • Yoshida H, Aoki M, Komiya A, Endo Y, Kawabata K et al (2020) HYBID (alias KIAA1199/CEMIP) and hyaluronan synthase coordinately regulate hyaluronan metabolism in histamine-stimulated skin fibroblasts. J Biol Chem 295:2483–2494. https://doi.org/10.1074/jbc.RA119.010457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadnikova P, Sinova R, Pavlik V, Simek M, Safrankova B et al (2022) The degradation of hyaluronan in the skin. Biomolecules 12:251–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielke H, Wolber L, Wiest L, Rzany B (2008) Risk profiles of different injectable fillers: results from the Injectable Filler Safety Study (IFS Study). Dermatol Surg 34(3):326–335

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Duksung Women’s University research Grants 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ae-Ri Cho Lee.

Ethics declarations

Conflict of interest

The author (Ae-Ri Cho Lee) declares that there is no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho Lee, AR. Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. J. Pharm. Investig. 53, 357–376 (2023). https://doi.org/10.1007/s40005-023-00614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00614-1

Keywords

Navigation