Skip to main content
Log in

Orodispersible film incorporating nanoparticulate loratadine for an enhanced oral bioavailability

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

Loratadine (LOR), a commonly prescribed antihistamine, has low water solubility but high permeability. In this study, an orodispersible film incorporating the nanoparticulate loratadine was prepared to enhance the oral bioavailability of a poorly water-soluble drug.

Methods

Nanoparticulate loratadine was formulated using the antisolvent precipitation method and optimized by a single-factor design based on the particle size and polydispersity index. The optimal formulation was spray-dried and characterized by powder X-ray diffraction and differential scanning calorimetry. Nanoparticulate loratadine was loaded into an orodispersible film using a solvent casting method.

Results

In the dissolution tests, the nanoparticulate loratadine-loaded orodispersible film exhibited a 6.5-fold higher dissolution rate than the pure loratadine-loaded film and a similar dissolution rate compared to the commercialized orodispersible tablet, Loratadine SPM. In pharmacokinetic studies conducted on rats, the maximum concentration (Cmax) and area under the curve of the plasma concentration–time profile from 0 to 24 h (AUC0-24 h) of the nanoparticulate loratadine-loaded orodispersible film significantly increased 1.8-fold and 5.8-fold, respectively. The elimination half-life (t1//2) increased 5.1-fold compared to the loratadine-loaded counterpart.

Conclusion

These results suggest the potential of orodispersible films to improve the oral bioavailability of poorly water-soluble drugs and promote compliance in pediatric and geriatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albayati TM, Salih IK, Alazzawi HF (2019) Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon 5:e02539

    Article  PubMed  PubMed Central  Google Scholar 

  • Alshweiat A, Katona G, Csóka I, Ambrus R (2018) Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci 122:94–104

    Article  CAS  PubMed  Google Scholar 

  • Boateng JS, Stevens HNE, Eccleston GM et al (2009) Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces. Drug Dev Ind Pharm 35:986–996

    Article  CAS  PubMed  Google Scholar 

  • Comoglu T, Dilek Ozyilmaz E (2019) Orally disintegrating tablets and orally disintegrating mini tablets—novel dosage forms for pediatric use. Pharm Dev Technol 24:902–914

    Article  CAS  PubMed  Google Scholar 

  • D’Addio SM, Prud’homme RK (2011) Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev 63:417–426

    Article  PubMed  Google Scholar 

  • Dalvi SV, Dave RN (2009) Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation. Ind Eng Chem Res 48:7581–7593

    Article  CAS  Google Scholar 

  • Danaei M, Dehghankhold M, Ataei S et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng J, Huang L, Liu F (2010) Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm 390:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai P, Wang KZ, Ann D et al (2020) Efficacy and pharmacokinetic considerations of loratadine nanoformulations and its combinations for pancreatic cancer chemoprevention. Pharm Res 37:21

    Article  CAS  PubMed  Google Scholar 

  • Diaz DA, Colgan ST, Langer CS et al (2016) Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? AAPS J 18:15–22

    Article  PubMed  Google Scholar 

  • Frizon F, de Oliveira EJ, Donaduzzi CM et al (2013) Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol 235:532–539

    Article  CAS  Google Scholar 

  • Hoffmann EM, Breitenbach A, Breitkreutz J (2011) Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv 8:299–316

    Article  CAS  PubMed  Google Scholar 

  • Kapote DN, Wagner KG (2021) Influence of shellac on the improvement of solubility and supersaturation of loratadine amorphous solid dispersion using a new grade of HPMC. J Drug Deliv Sci Technol 61:102116

    Article  CAS  Google Scholar 

  • Khan MZI, Raušl D, Zanoški R et al (2004) Classification of loratadine based on the biopharmaceutics drug classification concept and possible in Vitroin Vivo Correlation. Biol Pharm Bull 27:1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Madhav KV, Kishan V (2018) Self microemulsifying particles of loratadine for improved oral bioavailability: preparation, characterization and in vivo evaluation. J Pharm Investig 48:497–508

    Article  CAS  Google Scholar 

  • Melzig S, Finke JH, Schilde C, Kwade A (2018) Formation of long-term stable amorphous ibuprofen nanoparticles via antisolvent melt precipitation (AMP). Eur J Pharm Biopharm 131:224–231

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KV, Dang TK, Pham HT et al (2022) Development of Panax notoginseng saponins-loaded orodispersible films: a potential approach to enhance delivery efficacy in older adults. J Appl Pharm Sci 12:44–53

    Article  CAS  Google Scholar 

  • Raju PN, Kumar MS, Reddy CM, Ravishankar K (2013) Formulation and evaluation of fast dissolving films of loratidine by solvent casting method. Pharma Innov 2:5

    Google Scholar 

  • Roman IJ, Danzig MR (1993) Loratadine. a review of recent findings in pharmacology, pharmacokinetics, efficacy, and safety, with a look at its use in combination with pseudoephedrine. Clin Rev Allergy 11:89–110

    Article  CAS  PubMed  Google Scholar 

  • Sarheed O, Shouqair D, Ramesh K et al (2020) Physicochemical characteristics and in vitro permeation of loratadine solid lipid nanoparticles for transdermal delivery. Ther Deliv 11:685–700

    Article  CAS  PubMed  Google Scholar 

  • Sinha B, Müller RH, Möschwitzer JP (2013) Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int J Pharm 453:126–141

    Article  CAS  PubMed  Google Scholar 

  • Sora DI, Udrescu S, David V, Medvedovici A (2007) Validated ion pair liquid chromatography/fluorescence detection method for assessing the variability of the loratadine metabolism occurring in bioequivalence studies. Biomed Chromatogr 21:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Sun DD, Wen H, Taylor LS (2016) Non-sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J Pharm Sci 105:2477–2488

    Article  CAS  PubMed  Google Scholar 

  • Thorat AA, Dalvi SV (2012) Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J 181–182:1–34

    Article  Google Scholar 

  • Tran TH, Poudel BK, Marasini N et al (2013) Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent. Int J Pharm 443:50–57

    Article  CAS  PubMed  Google Scholar 

  • Tran TB, Tran TH, Vu YH et al (2021) pH-responsive nanocarriers for combined chemotherapies: a new approach with old materials. Cellulose 28:3423–3433

    Article  CAS  Google Scholar 

  • Truong DH, Tran TH, Ramasamy T et al (2015) Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. Powder Technol 283:260–265

    Article  CAS  Google Scholar 

  • Truong DH, Tran TH, Ramasamy T et al (2016) Development of solid self-emulsifying formulation for improving the oral bioavailability of erlotinib. AAPS PharmSciTech 17:466–473

    Article  CAS  PubMed  Google Scholar 

  • Üner M, Karaman EF, Aydoğmuş Z (2014) Solid Lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Trop J Pharm Res 13:653–660

    Article  Google Scholar 

  • Van Eerdenbrugh B, Van den Mooter G, Augustijns P (2008) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75

    Article  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Vermant J, Martens JA et al (2009) A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci 98:2091–2103

    Article  PubMed  Google Scholar 

  • Vasoya JM, Desai HH, Gumaste SG et al (2019) Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for increasing dissolution rate of a poorly soluble drug model. J Pharm Sci 108:888–896

    Article  CAS  PubMed  Google Scholar 

  • Vikash, Kumar V (2020) Ultrasonic-assisted de-agglomeration and power draw characterization of silica nanoparticles. Ultrason Sonochem 65:105061

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chang R, Zhao Y et al (2017) Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS PharmSciTech 18:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Wu JX, Cui F et al (2012) Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers. Eur J Pharm Sci 46:446–454

    Article  CAS  PubMed  Google Scholar 

  • Yin OQP, Shi X, Chow MSS (2003) Reliable and specific high-performance liquid chromatographic method for simultaneous determination of loratadine and its metabolite in human plasma. J Chromatogr B 796:165–172

    Article  CAS  Google Scholar 

  • Zhang H-X, Wang J-X, Zhang Z-B et al (2009) Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm 374:106–113

    Article  CAS  PubMed  Google Scholar 

  • Zhu W-Z, Wang J-X, Shao L et al (2010) Liquid antisolvent preparation of amorphous cefuroxime axetil nanoparticles in a tube-in-tube microchannel reactor. Int J Pharm 395:260–265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Hiep Tran.

Ethics declarations

Conflict of interest

All authors (Khanh Van Nguyen, Thu Kim Dang, Linh Thi Dieu Vu, Nhan Thi Ha, Hieu Duy Truong, and Tuan Hiep Tran) declare that they have no conflict of interest.

Statement of human and animal rights

Animal studies were performed after receiving approval from the Animal Ethics Experimentation Committee of Vietnam Military Medical University No. LORA.01 (Hanoi, Vietnam).

Availability of Data and Materials

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. The data that support the findings of this study are available from the corresponding author, on special request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, K., Dang, T.K., Vu, L.T.D. et al. Orodispersible film incorporating nanoparticulate loratadine for an enhanced oral bioavailability. J. Pharm. Investig. 53, 417–426 (2023). https://doi.org/10.1007/s40005-023-00613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00613-2

Keywords

Navigation