Skip to main content

Advertisement

Log in

A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Pharmacomicrobiomics, which has recently emerged as a new strategy for personalized medicine, is the investigation of the influence of microbial variability on drug pharmacokinetics, efficacy, and safety. The roles of gut microbiota in drug pharmacokinetics should be thoroughly investigated, given the significant implications of gut microbiota in humans.

Area covered

In this paper, we provide a mechanism-based review of the impact of the gut microbiota on drug pharmacokinetics, primarily based on drug metabolism and transporters. The main mechanisms presented here are the direct metabolism of drugs by gut microbiota activity, modulation of relevant gene expression, and competitive inhibition using their metabolites. We also present the limitations of current research and provide perspectives for future investigations.

Expert opinion

Although prominent advances in research have paved the way to link gut microbiota and drug pharmacokinetics, there are still some limitations and restrictions to understand their intricate association. Particular attention should be paid to studies using germ-free or antibiotic-treated animals to determine associations between gut microbiota and drug pharmacokinetics. Technical limitations may also hamper advances in research on microbiota, and the expanded use of -omics techniques is expected to further improve the accuracy and efficiency of microbial investigations. More translational research that links clinical and in vitro/pre-clinical studies is warranted to facilitate microbiome-based personalized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adlerberth I, Strachan DP, Matricardi PM et al (2007) Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 120:343–350. https://doi.org/10.1016/J.JACI.2007.05.018

    Article  CAS  Google Scholar 

  • Akao T, Kida H, Kanaoka M et al (1998) Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 50:1155–1160. https://doi.org/10.1111/j.2042-7158.1998.tb03327.x

    Article  CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  Google Scholar 

  • Aura A-M, Mattila I, Hyo¨tylaïnen TH et al (2011) Drug metabolome of the Simvastatin formed by human intestinal microbiota in vitro. R Soc Chem 7:437. https://doi.org/10.1039/c0mb00023j

    Article  CAS  Google Scholar 

  • Bai X, Liu G, Yang J et al (2022) Gut microbiota as the potential mechanism to mediate drug metabolism under high-altitude hypoxia. Curr Drug Metab 23:8–20

    Article  CAS  Google Scholar 

  • Balasubramanian R, Maideen NMP (2021) HMG-CoA reductase inhibitors (statins) and their drug interactions involving CYP enzymes, P-glycoprotein and OATP transporters-an overview. Curr Drug Metab 22:328–341

    CAS  Google Scholar 

  • Balla A, Jeong YS, Kim H et al (2021) Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics of procainamide and its metabolite N-Acetylprocainamide, organic cation transporter substrates, in rats with PBPK modeling approach. Pharmaceutics. https://doi.org/10.3390/pharmaceutics13081133

    Article  Google Scholar 

  • Basit AW, Lacey LF (2001) Colonic metabolism of ranitidine: implications for its delivery and absorption. Int J Pharm 227:157–165

    Article  CAS  Google Scholar 

  • Basit AW, Newton JM, Lacey LF (2002) Susceptibility of the H2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. Int J Pharm 237:23–33. https://doi.org/10.1016/S0378-5173(02)00018-2

    Article  CAS  Google Scholar 

  • Beltrán D, Frutos-Lisón MD, Espín JC, García-Villalba R (2019) Re-examining the role of the gut microbiota in the conversion of the lipid-lowering statin monacolin K (lovastatin) into its active β-hydroxy acid metabolite. Food Funct 10:1787–1791

    Article  Google Scholar 

  • Bhatt AP, Pellock SJ, Biernat KA et al (2020) Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci USA 117:7374–7381

    Article  CAS  Google Scholar 

  • Bhattacharya S, Cross RK (2022) Medical treatment of ulcerative colitis. In: Strong SA (ed) Seminars in colon and rectal surgery. Elsevier, Amsterdam, p 100863

    Google Scholar 

  • Björkholm B, Bok CM, Lundin A et al (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0006958

    Article  Google Scholar 

  • Bode LM, Bunzel D, Huch M et al (2013) In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr 97:295–309

    Article  CAS  Google Scholar 

  • Borre YE, O’Keeffe GW, Clarke G et al (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20:509–518

    Article  Google Scholar 

  • Bourguet W, Ruff M, Chambon P et al (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375:377–382. https://doi.org/10.1038/375377a0

    Article  CAS  Google Scholar 

  • Bull MJ, Plummer NT (2014) Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas) 13:17–22

    Google Scholar 

  • Cadeddu G, Deidda A, Stochino ME et al (2015) Clozapine toxicity due to a multiple drug interaction: a case report. J Med Case Rep 9:1–6

    Article  Google Scholar 

  • Caldwell J, Hawksworth GM (1973) The demethylation of methamphetamine by intestinal microflora. J Pharm Pharmacol 25:422–424

    Article  CAS  Google Scholar 

  • Chae Y-J, Chang J-E, Lee M-K et al (2021a) Regulation of drug transporters by microRNA and implications in disease treatment. J Pharm Investig 52:23

    Article  Google Scholar 

  • Chae Y-J, Kim M-S, Chung S-J et al (2021b) Pharmacokinetic estimation models-based approach to predict clinical implications for CYP induction by calcitriol in human cryopreserved hepatocytes and HepaRG cells. Pharmaceutics 13:181

    Article  CAS  Google Scholar 

  • Chamseddine AN, Ducreux M, Armand J-P et al (2019) Intestinal bacterial β-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol Ther 199:1–15

    Article  CAS  Google Scholar 

  • Chen MX, Wang S-Y, Kuo C-H, Tsai I-L (2019) Metabolome analysis for investigating host-gut microbiota interactions. J Formos Med Assoc 118:S10–S22

    Article  Google Scholar 

  • Chen K, Zhao H, Shu L et al (2020) Effect of resveratrol on intestinal tight junction proteins and the gut microbiome in high-fat diet-fed insulin resistant mice. Int J Food Sci Nutr 71:965–978

    Article  CAS  Google Scholar 

  • Chen Y, Zhou J, Wang L (2021) Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol 11:86

    CAS  Google Scholar 

  • Cheng K-W, Tseng C-H, Tzeng C-C et al (2019) Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol Res 139:41–49

    Article  CAS  Google Scholar 

  • Choi MS, Kim YC, Maeng H-J (2020) Therapeutic targets of vitamin D receptor ligands and their pharmacokinetic effects by modulation of transporters and metabolic enzymes. J Pharm Investig 50:1–16

    Article  Google Scholar 

  • Clayton TA, Baker D, Lindon JC et al (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci USA 106:14728–14733. https://doi.org/10.1073/pnas.0904489106

    Article  Google Scholar 

  • Crouwel F, Buiter HJC, de Boer NK (2021) Gut microbiota-driven drug metabolism in inflammatory bowel disease. J Crohn’s Colitis 15:307–315

    Article  Google Scholar 

  • David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/NATURE12820

    Article  CAS  Google Scholar 

  • Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S-1141S

    Article  CAS  Google Scholar 

  • Di L (2014) The role of drug metabolizing enzymes in clearance. Expert Opin Drug Metab Toxicol 10:379–393. https://doi.org/10.1517/17425255.2014.876006

    Article  CAS  Google Scholar 

  • Di Pede G, Bresciani L, Calani L et al (2020) The Human microbial metabolism of quercetin in different formulations: an in itro evaluation. Foods (Basel Switzerland). https://doi.org/10.3390/foods9081121

    Article  Google Scholar 

  • Diasio RB (1998) Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br J Clin Pharmacol 46:1. https://doi.org/10.1046/J.1365-2125.1998.00050.X

    Article  CAS  Google Scholar 

  • Dobkin JF, Saha JR, Butler VP Jr et al (1982) Inactivation of digoxin by Eubacterium lentum, an anaerobe of the human gut flora. Trans Assoc Am Phys 95:22–29

    CAS  Google Scholar 

  • Dobkin JF, Saha JR, Butler VP Jr et al (1983) Digoxin-inactivating bacteria: identification in human gut flora. Science (80-) 220:325–327

    Article  CAS  Google Scholar 

  • Dodd D, Spitzer MH, Van Treuren W et al (2017) A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551:648–652. https://doi.org/10.1038/nature24661

    Article  CAS  Google Scholar 

  • Doestzada M, Vila AV, Zhernakova A et al (2018) Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell 9:432–445. https://doi.org/10.1007/s13238-018-0547-2

    Article  CAS  Google Scholar 

  • Drasar BS, Renwick AG, Williams RT (1972) The role of the gut flora in the metabolism of cyclamate. Biochem J 129:881–890. https://doi.org/10.1042/bj1290881

    Article  CAS  Google Scholar 

  • Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216:20–40

    Article  CAS  Google Scholar 

  • El Aidy S, Van Den Bogert B, Kleerebezem M (2015) The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 32:14–20

    Article  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895. https://doi.org/10.1126/SCIENCE.3283939

    Article  CAS  Google Scholar 

  • Feng R, Shou J-W, Zhao Z-X et al (2015) Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep 5:1–15

    CAS  Google Scholar 

  • Feng Y, Huang Y, Wang Y et al (2019) Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS ONE 14:e0218384

    Article  CAS  Google Scholar 

  • Flowers SA, Bhat S, Lee JC (2020) Potential implications of gut microbiota in drug pharmacokinetics and bioavailability. Pharmacotherapy 40:704–712

    Article  Google Scholar 

  • Foley SE, Tuohy C, Dunford M et al (2021) Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 9:1–17

    Article  Google Scholar 

  • Gibiino G, Lopetuso LR, Scaldaferri F et al (2018) Exploring bacteroidetes: metabolic key points and immunological tricks of our gut commensals. Dig Liver Dis 50:635–639

    Article  Google Scholar 

  • Gingell R, Bridges JW, Williams RT (1971) The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Xenobiotica 1:143–156

    Article  CAS  Google Scholar 

  • Goldin BR, Peppercorn MA, Goldman P (1973) Contributions of host and intestinal microflora in the metabolism of L dopa by the rat. J Pharmacol Exp Ther 86:160–166

    Google Scholar 

  • González-Sarrías A, Azorín-Ortuño M, Yáñez-Gascón MJ et al (2009) Dissimilar in vitro and in vivo effects of ellagic acid and its microbiota-derived metabolites, urolithins, on the cytochrome P450 1A1. J Agric Food Chem 57:5623–5632. https://doi.org/10.1021/JF900725E

    Article  Google Scholar 

  • González-Sarrías A, Miguel V, Merino G et al (2013) The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). J Agric Food Chem 61:4352–4359. https://doi.org/10.1021/jf4007505

    Article  CAS  Google Scholar 

  • Grenader T, Gipps M, Shavit L, Gabizon A (2007) Significant drug interaction: phenytoin toxicity due to erlotinib. Lung Cancer 57:404–406

    Article  Google Scholar 

  • Grześk G, Stolarek W, Kasprzak M et al (2018) Therapeutic drug monitoring of digoxin–20 years of experience. Pharmacol Rep 70:184–189

    Article  Google Scholar 

  • Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  Google Scholar 

  • Haiser HJ, Turnbaugh PJ (2013) Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 69:21

    Article  CAS  Google Scholar 

  • Haiser HJ, Gootenberg DB, Chatman K et al (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science (80-) 341:295–298. https://doi.org/10.1126/science.1235872

    Article  CAS  Google Scholar 

  • Harris BE, Manning BW et al (1986) Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother 29:44. https://doi.org/10.1128/AAC.29.1.44

    Article  CAS  Google Scholar 

  • Hashim H, Azmin S, Razlan H et al (2014) Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with parkinson’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0112330

    Article  Google Scholar 

  • Healey GR, Murphy R, Brough L et al (2017) Interindividual variability in gut microbiota and host response to dietary interventions. Nutr Rev 75:1059–1080. https://doi.org/10.1093/NUTRIT/NUX062

    Article  Google Scholar 

  • Hold GL, Pryde SE, Russell VJ et al (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39

    Article  CAS  Google Scholar 

  • Holtbecker N, Fromm MF, Kroemer HK et al (1996) The nifedipine-rifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 24:1121–1123

    CAS  Google Scholar 

  • Hu N, Liu X, Mu Q et al (2021) The gut microbiota contributes to the modulation of intestinal CYP3A1 and P-gp in streptozotocin-induced type 1 diabetic rats. Eur J Pharm Sci 162:105833. https://doi.org/10.1016/J.EJPS.2021.105833

    Article  CAS  Google Scholar 

  • Hughes R, Kurth MJ, McGilligan V et al (2008) Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutr Cancer 60:259–266

    Article  CAS  Google Scholar 

  • Jin UH, Cheng Y, Park H, Davidson LA, Callaway ES, Chapkin RS, Jayaraman A, Asante A, Allred C, Weaver EA, Safe S (2017) Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and Caco-2 human colon cancer cells. Sci Rep 7(1):10163. https://doi.org/10.1038/s41598-017-10824-x

  • Jin M, Li J, Liu F et al (2019) Analysis of the gut microflora in patients with parkinson’s disease. Front Neurosci. https://doi.org/10.3389/fnins.2019.01184

    Article  Google Scholar 

  • Jourová L, Anzenbacher P, Lišková B et al (2017) Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol (Praha) 62:463–469. https://doi.org/10.1007/s12223-017-0517-8

    Article  CAS  Google Scholar 

  • Jourová L, Vavreckova M, Zemanova N et al (2020) Gut microbiome alters the activity of liver cytochromes P450 in mice with sex-dependent differences. Front Pharmacol 11:1303. https://doi.org/10.3389/fphar.2020.01303

    Article  CAS  Google Scholar 

  • Jurutka PW, Thompson PD, Whitfield GK et al (2005) Molecular and functional comparison of 1,25-dihydroxyvitamin D3 and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome. J Cell Biochem 94:917–943. https://doi.org/10.1002/jcb.20359

    Article  CAS  Google Scholar 

  • Khan I, Ullah N, Zha L et al (2019) Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 8:126

    Article  CAS  Google Scholar 

  • Kim D-H, Kobashi K (1986) The role of intestinal flora in metabolism of phenolic sulfate esters. Biochem Pharmacol 35:3507–3510

    Article  CAS  Google Scholar 

  • Kim DH, Hyun SH, Shim SB, Kobashi K (1992) The role of intestinal bacteria in the transformation of sodium picosulfate. Jpn J Pharmacol 59:1–5. https://doi.org/10.1254/jjp.59.1

    Article  CAS  Google Scholar 

  • Kim DH, Hong SW, Kim BT et al (2000) Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch Pharm Res 23:172–177. https://doi.org/10.1007/BF02975509

    Article  CAS  Google Scholar 

  • Kim J, Lee H, An J et al (2019) Alterations in gut microbiota by statin therapy and possible intermediate effects on hyperglycemia and hyperlipidemia. Front Microbiol 10:1947

    Article  Google Scholar 

  • Kim JK, Choi MS, Kim JY et al (2021) Ginkgo biloba leaf extract suppresses intestinal human breast cancer resistance protein expression in mice: correlation with gut microbiota. Biomed Pharmacother 140:111712. https://doi.org/10.1016/J.BIOPHA.2021.111712

    Article  CAS  Google Scholar 

  • Kitamura S, Sugihara K, Kuwasako M, Tatsumi K (1997) The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J Pharm Pharmacol 49:253–256. https://doi.org/10.1111/j.2042-7158.1997.tb06790.x

    Article  CAS  Google Scholar 

  • Klotz U (1985) Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin Pharmacokinet 10:285–302

    Article  CAS  Google Scholar 

  • Kobashi K, Nishimura T, Kusaka M et al (1980) Metabolism of sennosides by human intestinal bacteria. Planta Med 40:225–236

    Article  CAS  Google Scholar 

  • Koppel N, Maini Rekdal V, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science (80-) 356:eaag2770

    Article  Google Scholar 

  • Kriaa A, Bourgin M, Potiron A et al (2019) Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 60:323–332. https://doi.org/10.1194/JLR.R088989

    Article  CAS  Google Scholar 

  • Kumano T, Fujiki E, Hashimoto Y, Kobayashi M (2016) Discovery of a sesamin-metabolizing microorganism and a new enzyme. Proc Natl Acad Sci USA 113:9087–9092

    Article  CAS  Google Scholar 

  • Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S (2016) Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice. Mol Pharm 13:2691–2701. https://doi.org/10.1021/acs.molpharmaceut.6b00259

    Article  CAS  Google Scholar 

  • Lau WL, Vaziri ND (2017) The leaky gut and altered microbiome in chronic kidney disease. J Ren Nutr 27:458–461

    Article  CAS  Google Scholar 

  • Lázár B, László SB, Hutka B et al (2021) A comprehensive time course and correlation analysis of indomethacin-induced inflammation, bile acid alterations and dysbiosis in the rat small intestine. Biochem Pharmacol 190:114590. https://doi.org/10.1016/J.BCP.2021.114590

    Article  Google Scholar 

  • Lee WM (2004) Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology 40:6–9. https://doi.org/10.1002/hep.20293

    Article  CAS  Google Scholar 

  • Lee SC, Renwick AG (1995) Sulphoxide reduction by rat intestinal flora and by Escherichia coli in vitro. Biochem Pharmacol 49:1567–1576

    Article  CAS  Google Scholar 

  • Lee HJ, Zhang H, Orlovich DA, Fawcett JP (2012) The influence of probiotic treatment on sulfasalazine metabolism in rat. Xenobiotica 42:791–797

    Article  CAS  Google Scholar 

  • Lee SG, Cho KH, Nguyen T-T-L et al (2022) Inhibitory effect of 20(S)-protopanaxadiol on cytochrome P450: potential of its pharmacokinetic interactions in vivo. Biomed Pharmacother 153:113514. https://doi.org/10.1016/J.BIOPHA.2022.113514

    Article  CAS  Google Scholar 

  • LinWu S-W, Syu C-J, Chen Y-L et al (2009) Characterization of Escherichia coli nitroreductase NfsB in the metabolism of nitrobenzodiazepines. Biochem Pharmacol 78:96–103

    Article  CAS  Google Scholar 

  • Liu Y, Zhang JW, Li W et al (2006) Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol Sci 91:356–364. https://doi.org/10.1093/TOXSCI/KFJ164

    Article  CAS  Google Scholar 

  • Lkhagva E, Chung H-J, Hong J et al (2021) The regional diversity of gut microbiome along the GI tract of male C57BL/6 mice. BMC Microbiol 21:1–13

    Article  Google Scholar 

  • Lolekha P, Sriphanom T, Vilaichone R-K (2021) Helicobacter pylori eradication improves motor fluctuations in advanced Parkinson’s disease patients: a prospective cohort study (HP-PD trial). PLoS ONE 16:e0251042

    Article  CAS  Google Scholar 

  • Mani S, Boelsterli UA, Redinbo MR (2014) Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol 54:559–580

    Article  CAS  Google Scholar 

  • Mathijssen RHJ, Van Alphen RJ, Verweij J et al (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194

    CAS  Google Scholar 

  • Matthies A, Clavel T, Gütschow M et al (2008) Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 74:4847–4852. https://doi.org/10.1128/AEM.00555-08

    Article  CAS  Google Scholar 

  • McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187

    Article  CAS  Google Scholar 

  • Mezaal MH, Farhan HA, Dakhil ZA (2020) COVID-19 pandemic impact on physicians’ decision-making: digoxin toxicity in view of combination of hydroxychloroquine and azithromycin: a case report. Open Access Maced J Med Sci 8:150–153

    Article  Google Scholar 

  • Mohos V, Pánovics A, Fliszár-Nyúl E et al (2019) Inhibitory effects of quercetin and its human and microbial metabolites on xanthine oxidase enzyme. Int J Mol Sci. https://doi.org/10.3390/ijms20112681

    Article  Google Scholar 

  • Nagpal R, Newman TM, Wang S et al (2018) Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. J Diabetes Res. https://doi.org/10.1155/2018/3462092

    Article  Google Scholar 

  • Nakayama H, Kinouchi T, Kataoka K et al (1997) Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 7:35–43. https://doi.org/10.1097/00008571-199702000-00005

    Article  CAS  Google Scholar 

  • Niehues M, Hensel A (2009) In-vitro interaction of L-dopa with bacterial adhesins of Helicobacter pylori: an explanation for clinicial differences in bioavailability? J Pharm Pharmacol 61:1303–1307

    Article  CAS  Google Scholar 

  • Nishida A, Inoue R, Inatomi O et al (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11:1–10

    Article  Google Scholar 

  • Nkamga VD, Armstrong N, Drancourt M (2017) In vitro susceptibility of cultured human methanogens to lovastatin. Int J Antimicrob Agents 49:176–182

    Article  Google Scholar 

  • Noda K, Nishiwaki Y, Kawahara M et al (2002) Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 346:85–91

    Article  CAS  Google Scholar 

  • Noh K, Kang YR, Nepal MR et al (2017) Impact of gut microbiota on drug metabolism: an update for safe and effective use of drugs. Arch Pharm Res 40:1345–1355

    Article  CAS  Google Scholar 

  • Nyholm D, Hellström PM (2021) Effects of Helicobacter pylori on levodopa pharmacokinetics. J Parkinsons Dis 11:61–69

    Article  CAS  Google Scholar 

  • Park H (2019) The role of gut microbiota in ginsenoside metabolism and biotransformation of ginsenoside by lactic acid bacteria. Curr Top Lact Acid Bact Probiotics 5:1–12

    Article  Google Scholar 

  • Penders J, Thijs C, Vink C et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521. https://doi.org/10.1542/PEDS.2005-2824

    Article  Google Scholar 

  • Peppercorn MA, Goldman P (1972) The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther 181:555–562

    CAS  Google Scholar 

  • Pierantozzi M, Pietroiusti A, Brusa L et al (2006) Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology 66:1824–1829

    Article  CAS  Google Scholar 

  • Pleasants JR (1959) Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Ann N Y Acad Sci 78:116–126

    Article  CAS  Google Scholar 

  • Rajpoot M, Sharma AK, Sharma A, Gupta GK (2018) Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. In: Sharma AK, Mishra NK (eds) Seminars in cancer biology. Elsevier, Amsterdam, pp 1–8

    Google Scholar 

  • Rengelshausen J, Göggelmann C, Burhenne J et al (2003) Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin–clarithromycin interaction. Br J Clin Pharmacol 56:32–38

    Article  CAS  Google Scholar 

  • Saito Y, Sato T, Nomoto K, Tsuji H (2018) Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy125

    Article  Google Scholar 

  • Saksena S, Goyal S, Raheja G et al (2011) Upregulation of p-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice. Am J Physiol Gastrointest Liver Physiol. https://doi.org/10.1152/AJPGI.00027.2011

    Article  Google Scholar 

  • Schupack DA, Mars RAT, Voelker DH et al (2021) The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol 19:7–25

    Article  Google Scholar 

  • Selwyn FP, Cui JY, Klaassen CD (2015) Special section on drug metabolism and the microbiome RNA-seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos 43:1572–1580. https://doi.org/10.1124/dmd.115.063545

    Article  CAS  Google Scholar 

  • Shimada Y, Kinoshita M, Harada K et al (2013) Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8:e80604

    Article  Google Scholar 

  • Shu YZ, Kingston DG, Van Tassell RLWT (1991) Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica 21:737

    Article  CAS  Google Scholar 

  • Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86:174–193

    Article  CAS  Google Scholar 

  • Staudinger JL, Goodwin B, Jones SA et al (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98:3369. https://doi.org/10.1073/PNAS.051551698

    Article  CAS  Google Scholar 

  • Stojanov S, Berlec A, Štrukelj B (2020) The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8:1715

    Article  CAS  Google Scholar 

  • Strong HA, Renwick AG, George CF et al (1987) The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica 17:685

    Article  CAS  Google Scholar 

  • Suga T, Yamaguchi H, Sato T et al (2017) Preference of conjugated bile acids over unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PLoS ONE 12:e0169719

    Article  Google Scholar 

  • Sun C, Chen L, Shen Z (2019) Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm J 27:1146–1156

    Article  CAS  Google Scholar 

  • Takakura A, Kurita A, Asahara T et al (2012) Rapid deconjugation of SN–38 glucuronide and adsorption of released free SN–38 by intestinal microorganisms in rat. Oncol Lett 3:520–524

    Article  CAS  Google Scholar 

  • Takeno SST (1991) Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology 44:209

    Article  CAS  Google Scholar 

  • Takezawa K, Fujita K, Matsushita M et al (2021) The Firmicutes/Bacteroidetes ratio of the human gut microbiota is associated with prostate enlargement. Prostate 81:1287–1293

    Article  CAS  Google Scholar 

  • Tao J-HH, Duan J-AA, Jiang S et al (2016) Biotransformation and metabolic profile of buddleoside with human intestinal microflora by ultrahigh-performance liquid chromatography coupled to hybrid linear ion trap/orbitrap mass spectrometer. J Chromatogr B 1025:7–15. https://doi.org/10.1016/j.jchromb.2016.04.055

    Article  CAS  Google Scholar 

  • Thummel KE, O’Shea D, Paine MF et al (1996) Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 59:491–502. https://doi.org/10.1016/S0009-9236(96)90177-0

    Article  CAS  Google Scholar 

  • Tirona RG (2011) Molecular mechanisms of drug transporter regulation. Handb Exp Pharmacol. https://doi.org/10.1007/978-3-642-14541-4_10

    Article  Google Scholar 

  • Toda T, Ohi K, Kudo T et al (2009a) Ciprofloxacin suppresses Cyp3a in mouse liver by reducing lithocholic acid-producing intestinal flora. Drug Metab Pharmacokinet 24:201–208. https://doi.org/10.2133/DMPK.24.201

    Article  CAS  Google Scholar 

  • Toda T, Saito N, Ikarashi N et al (2009b) Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica 39:323–334. https://doi.org/10.1080/00498250802651984

    Article  CAS  Google Scholar 

  • Tolson AH, Wang H (2010) Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 62:1238–1249. https://doi.org/10.1016/J.ADDR.2010.08.006

    Article  CAS  Google Scholar 

  • Tozaki H, Emi Y, Horisaka E et al (1997) Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: implications in peptide delivery to the colon. J Pharm Pharmacol 49:164–168. https://doi.org/10.1111/j.2042-7158.1997.tb06773.x

    Article  CAS  Google Scholar 

  • Trinh H, Joh E, Kwak H et al (2010) Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice. Nat Publ Gr. https://doi.org/10.1038/aps.2010.42

    Article  Google Scholar 

  • Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. Bmj 361:k2179

    Article  Google Scholar 

  • van Kessel SP, de Jong HR, Winkel SL et al (2020) Gut bacterial deamination of residual levodopa medication for Parkinson’s disease. BMC Biol 18:1–14. https://doi.org/10.1186/s12915-020-00876-3

    Article  CAS  Google Scholar 

  • Venkatesh M, Mukherjee S, Wang H et al (2014) Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity 41:296–310. https://doi.org/10.1016/j.immuni.2014.06.014

    Article  CAS  Google Scholar 

  • Vieira-Silva S, Falony G, Belda E et al (2020) Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581(7808):310–315. https://doi.org/10.1038/s41586-020-2269-x

    Article  CAS  Google Scholar 

  • Wang H, Chen J, Hollister K et al (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3:543–553. https://doi.org/10.1016/S1097-2765(00)80348-2

    Article  CAS  Google Scholar 

  • Wang W-L, Xu S-Y, Ren Z-G et al (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814. https://doi.org/10.3748/wjg.v21.i3.803

    Article  Google Scholar 

  • Watanabe K, Sakurai K, Tsuchiya Y et al (2013) Dual roles of nuclear receptor liver X receptor α (LXRα) in the CYP3A4 expression in human hepatocytes as a positive and negative regulator. Biochem Pharmacol 86:428–436. https://doi.org/10.1016/J.BCP.2013.05.016

    Article  CAS  Google Scholar 

  • Watanabe K, Yamashita S, Furuno K et al (1995) Metabolism of omeprazole by gut flora in rats. J Pharm Sci 84:516–517. https://doi.org/10.1002/jps.2600840425

    Article  CAS  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703. https://doi.org/10.1073/pnas.0812874106

    Article  Google Scholar 

  • Wong SH, Yu J (2019) Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 16:690–704

    Article  CAS  Google Scholar 

  • Woo PCY, Lau SKP, Teng JLL et al (2008) Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14:908–934

    Article  CAS  Google Scholar 

  • Wu CY, Benet LZ, Hebert MF et al (1995) Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 58:492–497. https://doi.org/10.1016/0009-9236(95)90168-X

    Article  CAS  Google Scholar 

  • Wu KC, Cui JY, Klaassen CD (2012) Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0039006

    Article  Google Scholar 

  • Xie HJ, Griskevicius L, Broberg U et al (2003) Alteration of pharmacokinetics of cyclophosphamide and suppression of the cytochrome P450 genes by ciprofloxacin. Bone Marrow Transplant  313(31):197–203. https://doi.org/10.1038/sj.bmt.1703815

    Article  CAS  Google Scholar 

  • Xie Y, Hu F, Xiang D et al (2020) The metabolic effect of gut microbiota on drugs. Drug Metab Rev 52:139–156

    Article  CAS  Google Scholar 

  • Yamamoto M, Kurita A, Asahara T et al (2008) Metabolism of irinotecan and its active metabolite SN-38 by intestinal microflora in rats. Oncol Rep 20:727–730

    CAS  Google Scholar 

  • Yan J, Tyring SK, McCrary MM et al (1997) The effect of sorivudine on dihydropyrimidine dehydrogenase activity in patients with acute herpes zoster. Clin Pharmacol Ther 61:563–573. https://doi.org/10.1016/S0009-9236(97)90136-3

    Article  CAS  Google Scholar 

  • Yañez CM, Hernández AM, Sandoval AM et al (2021) Prevalence of blastocystis and its association with firmicutes/bacteroidetes ratio in clinically healthy and metabolically ill subjects. BMC Microbiol 21:1–11

    Article  Google Scholar 

  • Yoo DH, Kim IS, Van Le TK et al (2014) Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos 42:1508–1513. https://doi.org/10.1124/dmd.114.058354

    Article  CAS  Google Scholar 

  • Yuan T, Wang J, Chen L et al (2020) Lactobacillus murinus improved the bioavailability of orally administered glycyrrhizic acid in rats. Front Microbiol 11:597. https://doi.org/10.3389/fmicb.2020.00597

    Article  Google Scholar 

  • Yue B, Gao R, Lv C et al (2021) Berberine improves irinotecan-induced intestinal mucositis without impairing the anti-colorectal cancer efficacy of irinotecan by inhibiting bacterial β-glucuronidase. Front Pharmacol 12:774560

    Article  CAS  Google Scholar 

  • Yun E-J, Imdad S, Jang J et al (2022) Diet is a stronger covariate than exercise in determining gut microbial richness and diversity. Nutrients 14:2507

    Article  CAS  Google Scholar 

  • Zhang M, Wang Y, Wu Y et al (2021) In vitro transformation of protopanaxadiol saponins in human intestinal flora and its effect on intestinal flora. Evidence-Based Complement Altern Med. https://doi.org/10.1155/2021/1735803

    Article  Google Scholar 

  • Zhao C, Hu Y, Chen H et al (2020) An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community. PLoS ONE 15:e0230200

    Article  CAS  Google Scholar 

  • Zheng P, Li Z, Zhou Z (2018) Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab Res Rev 34:e3043–e3043. https://doi.org/10.1002/dmrr.3043

    Article  Google Scholar 

  • Zheng Y, Ma L, Sun Q (2021) Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 12:705

    Google Scholar 

  • Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1:718–725

    Article  Google Scholar 

  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL (2019) Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science. https://doi.org/10.1126/science.aat9931

    Article  Google Scholar 

  • Zou H, Ye H, Kamaraj R et al (2021) A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine 92:153736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the KRIBB Research Initiative Program, the Technology Innovation Program (Nos. 20009774) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea), and the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2021R1I1A3056261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyeong-Ryoon Lee or Yoon-Jee Chae.

Ethics declarations

Conflict of interest

All authors (A. Gulnaz, J.-E. Chang, H.-J. Maeng, K.-H. Shin, K.-R. Lee, Y.-J. Chae) declare that they have no conflicts of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulnaz, A., Chang, JE., Maeng, HJ. et al. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. J. Pharm. Investig. 53, 73–92 (2023). https://doi.org/10.1007/s40005-022-00600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00600-z

Keywords

Navigation