Skip to main content
Log in

Sustained ocular delivery of desmopressin acetate via thermoreversible in situ gel formulation: preparation and in vitro/in vivo evaluation

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

The present study was designed to formulate a thermoreversible in situ gel system for sustained ocular delivery of desmopressin acetate (DDAVP) for the treatment of polyuria.

Methods

The cold method was employed for the preparation of in situ gel formulations using different levels of poloxamer 407 (F-127) and carboxymethyl chitosan (CMCTS). The optimal formulation was selected based on gelation temperature, rheological behavior, and in vitro drug release, and further evaluated by thermal, ocular irritation, residence time, in vivo pharmacokinetics, and pharmacodynamic analyses.

Results

The optimal formulation, composed of F-127 (20%) and CMCTS (1.5%), showed appropriate fluidity at room temperature (25 °C) and transitioned to semisolid gels at physiological temperature (34 °C). The optimal gels showed pseudoplastic fluid properties and favorable thixotropy characteristics in rheological tests. Differential scanning calorimetry analysis revealed even dispersal of DDAVP in the matrix of gels. Results from in vivo studies demonstrated that the newly prepared gel successfully prolonged the residence time of DDAVP, improved ocular bioavailability, and exerted the same antidiuretic effect as ophthalmic drops.

Conclusion

The developed thermoreversible ophthalmic in situ gel of DDAVP presents a promising formulation for the treatment of polyuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida H, Amaral MH, Lobão P, Sousa Lobo JM (2013) Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv 10(9):1223–1237

    Article  CAS  PubMed  Google Scholar 

  • Balderson DE, Cai G, Fries MA, Kleinman DM, McLaughlin MM, Trivedi TM (2015) A systematic review and meta-analysis to compare the efficacy of acyclovir 3% ophthalmic ointment to idoxuridine in curing herpetic keratitis by Day 7 of treatment. BMC Ophthalmol 15:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behndig A, Korobelnik JF (2015) Mydriatic insert and intracameral injections compared with mydriatic eyedrops in cataract surgery: controlled studies. J Cataract Refract Surg 41(7):1503–1519

    Article  PubMed  Google Scholar 

  • Bhalerao H, Koteshwara KB, Chandran S (2019) Levofloxacin hemihydrate in situ gelling ophthalmic solution: formulation optimization and in vitro and in vivo evaluation. AAPS PharmSciTech 20(7):272

    Article  PubMed  CAS  Google Scholar 

  • Bhattaccharjee S, Beck-Broichsitter M, Banga AK (2020) In situ gel formation in microporated skin for enhanced topical delivery of niacinamide. Pharmaceutics 12(5):472

    Article  CAS  PubMed Central  Google Scholar 

  • Cao Y, Zhang C, Shen W, Cheng Z, Yu LL, Ping Q (2007) Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120(3):186–194

    Article  CAS  PubMed  Google Scholar 

  • Chiou GC (1994) Systemic delivery of polypeptide drugs through ocular route. J Ocul Pharmacol 10(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Vaz J, Marques FB, Fernandes R, Alves C (2016) Drug transport across blood-ocular barriers and harmacokinetics. Pharmacology of ocular therapeutics. Springer, Cham, pp 37–63

    Chapter  Google Scholar 

  • Cvetković RS, Plosker GL (2005) Desmopressin: in adults with nocturia. Drugs 65(1):99–109

    Article  PubMed  Google Scholar 

  • Fangueiro JF, Veiga F, Silva AM, Souto EB (2016) Ocular drug delivery - new strategies for targeting anterior and posterior segments of the eye. Curr Pharm Des 22(9):1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  • Fulgêncio Gde O, Viana FA, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Júnior Ada S (2012) New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther 28(4):350–358

    Article  PubMed  CAS  Google Scholar 

  • Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RF (2010) A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm 75(2):186–193

    Article  CAS  PubMed  Google Scholar 

  • Hemelryck SV, Dewulf J, Niekus H, van Heerden M, Ingelse B, Holm R (2019) In vitro evaluation of poloxamer in situ forming gels for bedaquiline fumarate salt and pharmacokinetics following intramuscular injection in rats. Int J Pharm X 1:100016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herring R, Russell-Jones DDL (2018) Lessons for modern insulin development. Diabet Med 35(10):1320–1328

    Article  CAS  PubMed  Google Scholar 

  • Hosoya K, Lee VH, Kim KJ (2005) Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm 60(2):227–240

    Article  CAS  PubMed  Google Scholar 

  • Ibraheem D, Elaissari A, Fessi H (2014) Administration strategies for proteins and peptides. Int J Pharm 477(1–2):578–589

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal M, Kumar M, Pathak K (2015) Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Coll Surf B 130:23–30

    Article  CAS  Google Scholar 

  • Jiang G, Jia H, Qiu J, Mo Z, Wen Y, Zhang Y (2020) PLGA nanoparticle platform for trans-ocular barrier to enhance drug delivery: a comparative study based on the application of oligosaccharides in the outer membrane of carriers. Int J Nanomed 15:9373–9387

    Article  CAS  Google Scholar 

  • Jumelle C, Gholizadeh S, Annabi N, Dana R (2020) Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 321:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar N, Sinha VR (2019) In situ forming depot as sustained-release drug delivery systems. Crit Rev Ther Drug Carrier Syst 36(2):93–136

    Article  PubMed  Google Scholar 

  • Kim SO, Yu HS, Kwon D (2016) Efficacy of desmopressin to treat nocturnal polyuria in elderly men: effects on sleep quality. Urol Int 96(4):438–442

    Article  PubMed  Google Scholar 

  • Kottke D, Burckhardt BB, Knaab TC, Breitkreutz J, Fischer B (2021) Development and evaluation of a composite dosage form containing desmopressin acetate for buccal administration. Int J Pharm X 3:100082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchak M, Mahmoodzadeh M, Farrahi F (2019) Designing of a pH-triggered carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: in vitro, in vivo, and ex vivo evaluation. AAPS PharmSciTech 20(5):210

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Schoenwald RD, Chien DS, Packer AJ, Choi WW (1985) Systemic absorption and cardiovascular effects of phenylephrine eyedrops. Am J Ophthalmol 99(2):180–184

    Article  CAS  PubMed  Google Scholar 

  • Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK (2017) Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J Control Release 268:19–39

    Article  CAS  PubMed  Google Scholar 

  • Le Merdy M, Tan ML, Babiskin A, Zhao L (2020) Physiologically based pharmacokinetic model to support ophthalmic suspension product development. AAPS J 22(2):26

    Article  PubMed  CAS  Google Scholar 

  • Li F, Fei Q, Mao D, Si Q, Dai M, Ma Q, Zhang H, Bai L, He N (2020) Comparative pharmacokinetics of nimodipine in rat plasma and tissues following intraocular, intragastric, and intravenous administration. AAPS PharmSciTech 21(6):234

    Article  CAS  PubMed  Google Scholar 

  • Long L, Lai M, Mao X, Luo J, Yuan X, Zhang LM, Ke Z, Yang L, Deng DY (2019) Investigation of vitamin B12-modified amphiphilic sodium alginate derivatives for enhancing the oral delivery efficacy of peptide drugs. Int J Nanomed 14:7743–7758

    Article  CAS  Google Scholar 

  • Mao D, Li F, Ma Q, Dai M, Zhang H, Bai L, He N (2019) Intraocular administration of tetramethylpyrazine hydrochloride to rats: a direct delivery pathway for brain targeting? Drug Deliv 26(1):841–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  PubMed  CAS  Google Scholar 

  • Mühlfriedel R, Garrido MG, Wallrapp C, Seeliger MW (2018) Advanced ocular injection techniques for therapy approaches. Methods Mol Biol 1715:215–223

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee B, Karmakar SD, Hossain CM, Bhattacharya S (2014) Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system. Protein Pept Lett 21(11):1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Otvos L Jr, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:62

    PubMed  PubMed Central  Google Scholar 

  • Pandey P, Cabot PJ, Wallwork B, Panizza BJ, Parekh HS (2017) Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels: a platform for therapeutic delivery to mucosal sinus tissue. Eur J Pharm Sci 96:499–507

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Masud T, Blackshaw E, Naylor A, Hinchcliffe M, Jeffery K, Jordan F, Shabir-Ahmed A, King G, Lewis AL, Illum L, Perkins AC (2019) Nasal administration and plasma pharmacokinetics of parathyroid hormone peptide PTH 1–34 for the treatment of osteoporosis. Pharmaceutics 11(6):265

    Article  CAS  PubMed Central  Google Scholar 

  • Ramsay E, Del Amo EM, Toropainen E, Tengvall-Unadike U, Ranta VP, Urtti A, Ruponen M (2018) Corneal and conjunctival drug permeability: systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci 119:83–89

    Article  CAS  PubMed  Google Scholar 

  • Sai N, Dong X, Huang P, You L, Yang C, Liu Y, Wang W, Wu H, Yu Y, Du Y, Leng X, Yin X, Qu C, Ni J (2019) A novel gel-forming solution based on PEG-DSPE/Solutol HS 15 mixed micelles and gellan gum for ophthalmic delivery of curcumin. Molecules 25(1):81

    Article  PubMed Central  CAS  Google Scholar 

  • Semenistaya E, Zvereva I, Thomas A, Thevis M, Krotov G, Rodchenkov G (2015) Determination of growth hormone releasing peptides metabolites in human urine after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin. Drug Test Anal 7(10):919–925

    Article  CAS  PubMed  Google Scholar 

  • Shastri DH, Prajapati ST, Patel LD (2010a) Thermoreversible mucoadhesive ophthalmic in situ hydrogel: design and optimization using a combination of polymers. Acta Pharm 60(3):349–360

    Article  CAS  PubMed  Google Scholar 

  • Shastri DH, Prajapati ST, Patel LD (2010b) Design and development of thermoreversible ophthalmic in situ hydrogel of moxifloxacin HCl. Curr Drug Deliv 7(3):238–243

    Article  CAS  PubMed  Google Scholar 

  • Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K (2015) In situ gelling ophthalmic drug delivery system: an overview and its applications. Recent Pat Drug Deliv Formul 9(3):237–248

    Article  PubMed  CAS  Google Scholar 

  • Terho P (1991) Desmopressin in nocturnal enuresis. J Urol 145(4):818–820

    Article  CAS  PubMed  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, Lu J, Li J, Du S, Liu Z (2019) Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci 14(1):1–15

    Article  PubMed  Google Scholar 

  • Zeng Y, Chen J, Li Y, Huang J, Huang Z, Huang Y, Pan X, Wu C (2018) Thermo-sensitive gel in glaucoma therapy for enhanced bioavailability: in vitro characterization, in vivo pharmacokinetics and pharmacodynamics study. Life Sci 212:80–86

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning He.

Ethics declarations

Conflict of interest

All authors (F. Lei, H. Zhang, R. Luo, Q. Fei, L. Bai, and N. He) declare no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human subjects performed by any of the authors; all animal experiments were conducted following the guidelines of the Anhui University of Chinese Medicine Animal Care and Use Committee (Document number AHUCM-rabbits-2021132).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Zhang, H., Luo, R. et al. Sustained ocular delivery of desmopressin acetate via thermoreversible in situ gel formulation: preparation and in vitro/in vivo evaluation. J. Pharm. Investig. 52, 639–648 (2022). https://doi.org/10.1007/s40005-022-00592-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00592-w

Keywords

Navigation