Development of oral aprepitant-loaded chitosan–polyethylene glycol-coated cyclodextrin nanocapsules: formulation, characterization, and pharmacokinetic evaluation

Abstract

Purpose

Aprepitant (APRT), a selective neurokinin 1 antagonist, is clinically used in the prevention of acute and delayed chemotherapy-induced nausea and vomiting. The low solubility of APRT, which limits its oral bioavailability, is overcome by nanonization. This study aimed to design and evaluate novel in vitro and in vivo chitosan (CS)–polyethylene glycol (PEG)-coated cyclodextrin (CD) nanoparticles and nanocapsules to enhance the solubility and oral bioavailability of APRT.

Methods

A novel amphiphilic CD derivative with alkyl chains of 9 carbons (ACD-C9) was synthesized to form nanoparticles and nanocapsules by using nanoprecipitation. The nanocarriers were coated with the CS–PEG conjugate to increase their biological interaction with cell membranes via the positive charge and penetration-enhancer properties of CS. The nanosystems were evaluated for particle size, surface charge, drug loading, imaging, release, cell culture, and oral bioavailability in an animal model.

Results

The CS–PEG-coated nanosystems had particle size of 400–550 nm, a narrow polydispersity index, positive zeta potential, and favorable drug loading (55 and 93% for nanoparticles and nanocapsules, respectively). Sustained release was observed within 24 h. Blank nanoparticles and nanocapsules were non-cytotoxic against the L929 cell line. The intestinal permeability of the nanocarriers was 2–threefold (2-3 fold) higher than that of the drug solution, and the nanocapsules afforded the highest APRT permeability through Caco-2 cells. Oral bioavailability studies in rats revealed comparable degree of drug absorption between nanocapsules and commercial APRT products.

Conclusion

Oral ACD-C9 nanocapsules have the potential for the treatment of chemotherapy-induced nausea and vomiting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adel N (2017) Overview of chemotherapy-induced nausea and vomiting and evidence-based therapies. Am J Manage Care 23:S259–S265

    Google Scholar 

  2. Aktas Y, Andrieux K, Alonso MJ, Calvo P, Gursoy RN et al (2005) Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm 298:378–383

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Aktas Y, Yenice K, Bilensoy E, Hincal AA (2015) Amphiphilic cyclodextrins as enabling excipients for drug delivery and for decades of scientific collaboration: tribute to a distinguished scientist, French representative and friend—a historical perspective. J Drug Deliv Sci Technol 30:261–265

    CAS  Article  Google Scholar 

  4. Attari Z, Kalvakuntla S, Reddy MS, Deshpande M, Rao CM et al (2015) Formulation and characterisation of nanosuspensions of BCS class II and IV drugs by combinative method. J Exp Nanosci 11:276–288

    Article  CAS  Google Scholar 

  5. Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv 6:1161–1173

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Caliph SM, Charman WN, Porter CJ (2000) Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci 89:1073–1084

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Charman WN (2000) Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts. J Pharm Sci 89:967–978

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Charmsaz S, Collins DM, Perry AS, Prencipe M (2019) Novel strategies for cancer treatment: highlights from the 55th IACR Annual Conference. Cancers (Basel) 11:1125

    CAS  Article  Google Scholar 

  9. Chen X, Wang T, Lu M, Zhu L, Wang Y et al (2014) Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes. Int J Nanomed 9:2655–2664

    Google Scholar 

  10. Chorny M, Fishbein I, Danenberg HD, Golomb G (2002) Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release 83:389–400

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. Emami J, Boushehri MS, Varshosaz J (2014) Preparation, characterization and optimization of glipizide controlled release nanoparticles. Res Pharm Sci 9:301–314

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    CAS  Article  Google Scholar 

  14. Gharibzahedi SMT, Jafari SM (2017) Nanocapsule formation by cyclodextrins. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, Cambridge, pp 187–261

    Google Scholar 

  15. Groo AC, Saulnier P, Gimel JC, Gravier J, Ailhas C et al (2013) Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery. Int J Nanomed 8:4291–4302

    Google Scholar 

  16. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. He M, Zhong C, Hu H, Jin Y, Chen Y et al (2019) Cyclodextrin/chitosan nanoparticles for oral ovalbumin delivery: preparation, characterization and intestinal mucosal immunity in mice. Asian J Pharm Sci 14:193–203

    PubMed  Article  PubMed Central  Google Scholar 

  18. Ibrahim MA, Preuss CV (2020) Antiemetic Neurokinin-1 receptor blockers. StatPearls. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  19. Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MN (2009) Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res 26:492–501

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Kamboj S, Rana V (2016) Formulation optimization of aprepitant microemulsion-loaded silicated corn fiber gum particles for enhanced bioavailability. Drug Dev Ind Pharm 42:1267–1282

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Kamboj S, Sharma R, Singh K, Rana V (2015) Aprepitant loaded solid preconcentrated microemulsion for enhanced bioavailability: a comparison with micronized Aprepitant. Eur J Pharm Sci 78:90–102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Karimi Z, Abbasi S, Shokrollahi H, Yousefi G, Fahham M et al (2017) Pegylated and amphiphilic chitosan coated manganese ferrite nanoparticles for pH-sensitive delivery of methotrexate: synthesis and characterization. Mater Sci Eng C Mater Biol Appl 71:504–511

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Khattab WM, Zein El-Dein EE, El-Gizawy SA (2020) Formulation of lyophilized oily-core poly-E-caprolactone nanocapsules to improve oral bioavailability of Olmesartan Medoxomil. Drug Dev Ind Pharm 46:795–805

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Loftsson T, Duchene D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Loftsson T, Brewster ME, Másson M (2004) Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv 2:261–275

    CAS  Article  Google Scholar 

  27. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Nurgali K, Jagoe RT, Abalo R (2018) Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol 9:245

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Olver I, Shelukar S, Thompson KC (2007) Nanomedicines in the treatment of emesis during chemotherapy: focus on aprepitant. Int J Nanomed 2:13–18

    CAS  Article  Google Scholar 

  30. Palacio J, Agudelo NA, Lopez BL (2016) PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Curr Opin Chem Eng 11:14–19

    Article  Google Scholar 

  31. Parrott N, Lukacova V, Fraczkiewicz G, Bolger MB (2009) Predicting pharmacokinetics of drugs using physiologically based modeling-application to food effects. Aaps J 11:45–53

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Penalva R, Esparza I, Morales-Gracia J, Gonzalez-Navarro CJ, Larraneta E et al (2019) Casein nanoparticles in combination with 2-hydroxypropyl-beta-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm 570:118652

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Presas E, McCartney F, Sultan E, Hunger C, Nellen S et al (2018) Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control Release 286:402–414

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Ran F, Lei W, Cui Y, Jiao J, Mao Y et al (2018) Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. J Colloid Interface Sci 511:57–66

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Ren L, Zhou Y, Wei P, Li M, Chen G (2014) Preparation and pharmacokinetic study of aprepitant-sulfobutyl ether-beta-cyclodextrin complex. AAPS PharmSciTech 15:121–130

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Ridhurkar DN, Ansari KA, Kumar D, Kaul NS, Krishnamurthy T et al (2013) Inclusion complex of aprepitant with cyclodextrin: evaluation of physico-chemical and pharmacokinetic properties. Drug Dev Ind Pharm 39:1783–1792

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Roos C, Dahlgren D, Berg S, Westergren J, Abrahamsson B et al (2017) In vivo mechanisms of intestinal drug absorption from aprepitant nanoformulations. Mol Pharm 14:4233–4242

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Roos C, Dahlgren D, Sjogren E, Sjoblom M, Hedeland M et al (2018a) Jejunal absorption of aprepitant from nanosuspensions: role of particle size, prandial state and mucus layer. Eur J Pharm Biopharm 132:222–230

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Roos C, Westergren J, Dahlgren D, Lennernas H, Sjogren E (2018b) Mechanistic modelling of intestinal drug absorption—the in vivo effects of nanoparticles, hydrodynamics, and colloidal structures. Eur J Pharm Biopharm 133:70–76

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Sallas F, Darcy R (2008) Amphiphilic cyclodextrins—advances in synthesis and supramolecular chemistry. Eur J Org Chem 2008:957–969

    Article  CAS  Google Scholar 

  42. Salustio PJ, Pontes P, Conduto C, Sanches I, Carvalho C et al (2011) Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. Aaps Pharmscitech 12:1276–1292

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Shono Y, Jantratid E, Kesisoglou F, Reppas C, Dressman JB (2010) Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans. Eur J Pharm Biopharm 76:95–104

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Singare DS, Marella S, Gowthamrajan K, Kulkarni GT, Vooturi R et al (2010) Optimization of formulation and process variable of nanosuspension: an industrial perspective. Int J Pharm 402:213–220

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Sodeifian G, Sajadian SA, Daneshyan S (2018) Preparation of aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). J Supercrit Fluids 140:72–84

    CAS  Article  Google Scholar 

  46. Sun J, Wang F, Sui Y, She Z, Zhai W et al (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q(1)(0) as naked nanocrystals. Int J Nanomed 7:5733–5744

    CAS  Google Scholar 

  47. Tobio M, Sanchez A, Vila A, Soriano II, Evora C et al (2000) The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces 18:315–323

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Toziopoulou F, Malamatari M, Nikolakakis I, Kachrimanis K (2017) Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int J Pharm 533:324–334

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Ünal H, d’Angelo I, Pagano E, Borrelli F, Izzo A et al (2015) Core–shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evaluation. J Nanopart Res 17:1–13

    Article  CAS  Google Scholar 

  50. Unal H, Ozturk N, Bilensoy E (2015) Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein J Org Chem 11:204–212

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Unal S, Aktas Y, Benito JM, Bilensoy E (2020) Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm 584:119468

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Varan G, Varan C, Erdogar N, Hincal AA, Bilensoy E (2017) Amphiphilic cyclodextrin nanoparticles. Int J Pharm 531:457–469

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78:15–24

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Wang Y, Cui Y, Zhao Y, Zhao Q, He B et al (2018) Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. J Colloid Interface Sci 513:736–747

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Wu Y, Loper A, Landis E, Hettrick L, Novak L et al (2004) The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm 285:135–146

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. Ye Y, Zhang T, Li W, Sun H, Lu D, Wu B, Zhang X (2016) Glucose-based mesoporous carbon nanospheres as functional carriers for oral delivery of amphiphobic raloxifene: Insights into the bioavailability enhancement and lymphatic transport. Pharm Res 33:792–803

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Zerkoune L, Angelova A, Lesieur S (2014) Nano-Assemblies of modified cyclodextrins and their complexes with guest molecules: Incorporation in nanostructured membranes and amphiphile nanoarchitectonics design. Nanomaterials 4:741–765

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Zhang M, Li XH, Gong YD, Zhao NM, Zhang XF (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the TUBITAK Scientific Research Project 216S773. Authors would like to thank Hacettepe Technology Transfer Center for advance editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nazlı Erdoğar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research involving human and animal rights

This study was approved by the local ethics committee for animal experimentation of Hacettepe University. (Approval number, 2016/28–05).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erdoğar, N., Akkın, S., Nielsen, T.T. et al. Development of oral aprepitant-loaded chitosan–polyethylene glycol-coated cyclodextrin nanocapsules: formulation, characterization, and pharmacokinetic evaluation. J. Pharm. Investig. (2021). https://doi.org/10.1007/s40005-020-00511-x

Download citation

Keywords

  • Aprepitant
  • Nanoparticle
  • Nanocapsule
  • Amphiphilic cyclodextrin
  • Neurokinin-1 receptor antagonist
  • Chemotherapy-induced nausea and vomiting