Skip to main content

Camellia sinesis leaves extract ameliorates high fat diet-induced nonalcoholic steatohepatitis in rats: analysis of potential mechanisms

Abstract

Purpose

Our research aims to address and determine the effect of Camellia sinensis extract in the management of nonalcoholic steatohepatitis (NASH) in rats.

Methods

Forty adult female albino rats were divided into four groups. Group 1 (G1) served as the control group, while the other three groups received high-fat diet for 32 weeks to induce NASH and then were later assigned to the following groups: (G2) NASH-afflicted group which was left untreated, (G3) NASH-afflicted group treated with Camellia sinensis extract in a dose of 400 mg/kg, and (G4) NASH-afflicted group treated with Camellia sinensis extract in a dose of 200 mg/kg.

Results

Significant elevation in serum alanine aminotransferase, albumin, bilirubin (total and direct), cholesterol, low density lipoprotein, triglycerides, leptin, Cox-2, and CD40 values was recorded. Moreover, overexpression of hepatic tumor necrosis factor alpha and hepatocyte growth factor genes were recorded, whereas blood platelet count and serum high density lipoprotein concentration revealed significant depletion, which was paralleled by significant downregulation of hepatic adiponectin gene expression level in NASH group versus the control group. On the opposite side, treatment of NASH groups with two different doses of Camellia sinensis extract reversed the values of the measured biochemical parameters and the targeted gene expression levels when compared with the NASH group. Optical micrograph of liver tissue sections of rats treated with Camellia sinensis extract showed the observed improvement in the studied biochemical and genetic markers.

Conclusion

This study provides a clear evidence for the promising therapeutic potential of Camellia sinensis extract against NASH. This could be ascribed to its hepatoprotective activity, hypolipidemic effect, and anti-inflammatory potency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abdul Aziz M, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R (2018) Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA. Pak J Ethnobiol Ethnomed 14:2

    Google Scholar 

  • Adams LA, Lymp JF, Sauver JS, Sanderson SO, Lindor KD, Feldstein A et al (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129:113–121

    PubMed  Google Scholar 

  • Ali FK, El-Shafai SA, Samhan FA, Khalil WK (2008) Effect of water pollution on expression of immune response genes of Soleaaegyptiaca in Lake Qarun. Afr J Biotech 7:1418–1425

    Google Scholar 

  • Allain CC, Poon LS, Chan CS, Richmond WF, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  • Amirtharaj GJ, Natarajan SK, Mukhopadhya A, Zachariah UG, Hegde SK, Kurian G et al (2008) Fatty acids influence binding of cobalt to serum albumin in patients with fatty liver. Biochimica et Biophysica Acta (BBA) 1782:349–354

    CAS  Google Scholar 

  • Anushiravani A, Haddadi N, Pourfarmanbar M, Mohammadkarimi V (2019) Treatment options for nonalcoholic fatty liver disease: a double-blinded randomized placebo-controlled trial. Eur J Gastroenterol Hepatol 31:613–617

    CAS  PubMed  Google Scholar 

  • Armitage P, Berry G (1987) Comparison of several groups. Statistical method in medical research. Block Well Significant Publication, Oxford, pp 186–213

    Google Scholar 

  • Assman G, Jabs HU, Kohnert U, Nolte W, Schriewer H (1984) LDL-cholesteroldetermination in blood serum following precipitation of LDL with polyvinylsulfate. Clin Chim Acta 140:77–83

    Google Scholar 

  • Balaban YH, Sumer H, Simsek H, Us D, Tatar G (2006) Metabolic syndrome, non-alcoholic steatohepatitis (NASH), and hepatocyte growth factor (HGF). Ann Hepatol 5:109–114

    CAS  PubMed  Google Scholar 

  • Berardis S, Sokal E (2014) Pediatric non-alcoholic fatty liver disease: an increasing public health issue. Eur J Pediatr 173:131–139

    CAS  PubMed  Google Scholar 

  • Berk PD, Noyer C (1994) Clinical chemistry and physiology of bilirubin. Semin Liver Dis 4:346–355

    Google Scholar 

  • Bio-Rad Laboratories Inc (2006) Real-Time PCR applications guide. Bulletin 5279:101

    Google Scholar 

  • Bose M, Lambert JD, Ju J, Reuhl KR, ShapsesSA YCH (2008) The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr 138:1677–1683

    CAS  PubMed  Google Scholar 

  • Bourhia M, Shahat AA, Almarfadi MO, Naser FA, Abdelmageed WM, Said AS et al (2019) Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the Greater Casablanca-Morocco. Evid Based Complement Altern Med 1613457:9

    Google Scholar 

  • Bruno RS, Dugan CE, Smyth JA, Natale D, Koo SI (2008) Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J Nutr 138:323–331

    CAS  PubMed  Google Scholar 

  • Bursill C, Roach PD, Bottema CD, Pal S (2001) Green tea upregulates the low-density lipoprotein receptor through the sterol-regulated element binding protein in HepG2 liver cells. J Agric Food Chem 49(11):5639–5645

    CAS  PubMed  Google Scholar 

  • BursillCA AM, Roach PD (2007) A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol- fed rabbit. Athrosclerosis 193:86–93

    Google Scholar 

  • Cocchetto DM, Bjornsson TD (1983) Methods for vascular access and collection of body fluids from laboratory rat. J Pharm Sci 72:465–492

    CAS  PubMed  Google Scholar 

  • Corey KE, Rinella ME (2016) Medical and surgical treatment options for nonalcoholic steatohepatitis. Dig Dis Sci 61(5):1387–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo J, Cayón A, Fernández-Gil P, Hernández-Guerra M, Mayorga M, Domínguez-Díez A et al (2001) Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34:1158–1163

    CAS  PubMed  Google Scholar 

  • Day CP, George J (2011) The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis. An international collaborative study. Hepatology 54(4):1208–1216

    PubMed  Google Scholar 

  • de Moraes BB, Pasquini G, Aguiar O Jr, Gollücke AP, Ihara SS, Tenorio NM et al (2011) Protective effects of green tea against hepatic injury induced by high-cholesterol diet in rats: histopathological analysis, oxidative DNA damage and COX-2 expression. Hepatol Int 5(4):965–974

    PubMed  Google Scholar 

  • Desideri G, De Simone M, Iughetti L, Rosato T, Iezzi ML, Marinucci MC et al (2005) Early activation of vascular endothelial cells and platelets in obese children. J Clin Endocrinol Metabol 90(6):3145–3152

    CAS  Google Scholar 

  • Drury RA, Wallington EA (1980) Carleton’s histological technique, 5th edn. Oxford University Press, New York, pp 403–406

    Google Scholar 

  • Dumas BT, Biggs HG (1972) Standard methods of clinical chemistry. Academic Press, New York p, p 175

    Google Scholar 

  • Duseja A, Das A, Das R, Dhiman RK, Chawla Y, Bhansali A (2005) Unconjugated hyperbilirubinemia in nonalcoholic steatohepatitis—is it Gilbert's syndrome? Trop Gastroenterol 26:123–125

    PubMed  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating toadverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    PubMed  PubMed Central  Google Scholar 

  • Ercin CN, Dogru T, Tapan S, Karslioglu Y, Haymana C, Kilic S et al (2010) Levels of soluble CD40 ligand and P-selectin in nonalcoholic fatty liver disease. Dig Dis Sci 55:1128–1134

    CAS  PubMed  Google Scholar 

  • Evans NP, Call JA, Bassaganya-RieraJ RJL, Grange RW (2010) Green tea extract decreases muscle pathology and NF-κB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 29(3):391–398

    CAS  PubMed  Google Scholar 

  • Fain JN, Bahouth SW, Madan AK (2004) TNF[alpha] release by the nonfat cells of human adipose tissue. Int J Obes Relat Metab Disord 28:616–622

    CAS  PubMed  Google Scholar 

  • Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis: liver failure and liver disease. Hepatology 43:99–112

    Google Scholar 

  • Fassati P, Prencipe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28:2077–2080

    Google Scholar 

  • Fausto N, Laird AD, Webber EM (1995) Role of growth factors and cytokines in hepatic regeneration. FASEB J 9:1527–1536

    CAS  PubMed  Google Scholar 

  • Feng WY (2006) Metabolism of green tea catechins: an overview. Curr Drug Metab 7:755–809

    CAS  PubMed  Google Scholar 

  • Friedman JM (1998) Leptin, leptin receptors, and the control of body weight. Nutr Rev 56:38–46

    Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    CAS  PubMed  Google Scholar 

  • Fromenty B, Pessayre D (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Therap 67:101–154

    CAS  Google Scholar 

  • Gad SB, Zaghloul DM (2013) Beneficial effects of green tea extract on liver and kidney functions, ultrastructure, lipid profile and hematological parameters in aged male rats. Glob Veterinaria 11:191–205

    Google Scholar 

  • Gaytan F, Barreiro ML, Caminos JE, Chopin LK, Herington AC, Morales C et al (2004) Expression of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in normal human testis and testicular tumors. J Clin Endocrinol Metab 89:400–409

    CAS  PubMed  Google Scholar 

  • Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. Can Med Assoc J 172:367–379

    Google Scholar 

  • Hamden K, Carreau S, Ellouz F, Masmoudi H, El Feki A (2009) Improvement effect of green tea on hepatic dysfunction, lipid peroxidation and antioxidant defense depletion induced by cadmium. Afr J Biotechnol 8(17):4233–4238

    CAS  Google Scholar 

  • Hata J, Ikeda E, Uno H, Asano S (2002) Expression of hepatocyte growth factor mRNA in rat liver cirrhosis induced by N-nitrosodimethylamine as evidenced by in situ RT-PCR. J Histochem Cytochem 50:1461–1468

    CAS  PubMed  Google Scholar 

  • Hilal Y (2017) Morphology, manufacturing, types, composition and medicinal properties of tea (Camellia sinensis). J Basic Appl Plant Sci 1(2):107

    Google Scholar 

  • Holvoet P (2008) Relations between metabolic syndrome, oxidative stress inflammation cardiovascular disease. Verhandelingen - Koninklijke Academievoor Geneeskunde van Belgie 70(3):193–219

    CAS  Google Scholar 

  • Iqbal U, Perumpail B-J, Akhtar D, Kim D, Ahmed A (2019) The epidemiology, risk profiling and diagnostic challenges of nonalcoholic fatty liver disease. Medicines 6(1):41

    CAS  PubMed Central  Google Scholar 

  • Ishii T, Ichikawa T, Minoda K, Kusaka K, Ito S, Suzuki Y et al (2011) Human serum albumin as an antioxidant in the oxidation of (−)-epigallocatechin-3-gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 75:100–106

    CAS  PubMed  Google Scholar 

  • Kalra S-P, Dube M-G, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    CAS  PubMed  Google Scholar 

  • Kaser S, Moschen A, Cayon A, Kaser A, Crespo J, Pons-Romero F et al (2005) Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut 54:117–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kathirvel E, Chen P, Morgan K, French S-W, Morgan TR (2010) Oxidative stress and regulation of anti-oxidant enzymes in cytochrome P4502E1 transgenic mouse model of non-alcoholic fatty liver. J Gastroenterol Hepatol 25:1136–1143

    CAS  PubMed  Google Scholar 

  • Lampon N, Tutor JC (2011) A preliminary investigation on the possible association between diminished copper availability and non-alcoholic fatty liver disease in epileptic patients treated with valproic acid. J Med Sci 116(2):148–154

    Google Scholar 

  • Lee YS, Song YS, Giffard RG, Chan PH (2006) Biphasic role of nuclear factor-kappa B on cell survival and COX-2 expression in SOD1 Tg astrocytes after oxygen glucose deprivation. J Cerebr Blood Flow Metab 26:1076–1088

    CAS  Google Scholar 

  • Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    CAS  PubMed  Google Scholar 

  • Liu J, Lei D, Waalkes MP, Beliles RP, Morgan DL (2003) Genomic analysis of the rat lung following elemental mercury vapor exposure. Toxicol Sci 74:174–181

    CAS  PubMed  Google Scholar 

  • Loest HB, Noh SK, Koo SI (2002) Green tea extract inhibits the lymphatic absorption of cholesterol and alpha-tocopherol in ovariectomized rats. J Nutr 132:1282–1288

    CAS  PubMed  Google Scholar 

  • Lopez-Virella MF, Stone P, Ellis S, Golwell JA (1977) Cholesterol determination in high-density lipoproteins l separated by three different methods. Clin Chem 23:882–884

    Google Scholar 

  • Machado VM, Diehl AM (2016) Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150(8):1769–1777

    CAS  PubMed  Google Scholar 

  • Margetic S, Gazzola C, Pegg GG, Hill RA (2002) Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 26:1407–1433

    CAS  PubMed  Google Scholar 

  • Mitruka BM, Rawnsley HM (1977) Clinical biochemical and haematology reference values in normal and experimental animals. Masson Publishing USA Inc, New York, pp 134–135

    Google Scholar 

  • Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA et al (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kB system. Clin Vaccine Immunol 13:319–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuschwander-Tetri BA (2017) Non-alcoholic fatty liver disease. BMC Med 15:45

    PubMed  PubMed Central  Google Scholar 

  • Noori M, Jafari B, Hekmatdoost A (2017) Pomegranate juice prevents development of nonalcoholic fatty liver disease (NAFLD) in rats by attenuating oxidative stress and inflammation. J Sci Food Agric 97(8):2327–2332

    CAS  PubMed  Google Scholar 

  • Oliveira C, Gayotto LC, Tatai C, Nina BI, Lima ES, Abdalla D et al (2003) Vitamin C and vitamin E in prevention of nonalcoholic fatty liver disease (NAFLD) in choline deficient diet fed rats. Nutr J 7:2–9

    Google Scholar 

  • Oyama J, Maeda T, Kouzuma K, Ochiai R, Tokimitsu I, Higuchi Y et al (2010) Greentea catechins improve human forearm endothelial dysfunction and have antiatherosclerotic effects in smokers. Circ J 74(3):578–588

    CAS  PubMed  Google Scholar 

  • Petridou E, Mantzoros CS, Belechri M, Skalkidou A, Dessypris N, Papathoma E et al (2005) Neonatal leptin levels are strongly associated with female gender, birth length, IGF-I levels and formula feeding. Clin Endocrinol 62:366–371

    CAS  Google Scholar 

  • Pezeshki A, Safi S, Feizi A, Askari G, Karami F (2016) The effect of green tea extract supplementation on liver enzymes in patients with nonalcoholic fatty liver disease. Int J Prev Med 7(1):28

    PubMed  PubMed Central  Google Scholar 

  • Pignatelli P, Cangemi R, Celestini A, Carnevale R, Polimeni L, Martini A et al (2008) Tumor necrosis factor-α upregulates platelet CD40L in patients with heart failure. Cardiovasc Res 78:515–522

    CAS  PubMed  Google Scholar 

  • Preiss D, Sattar N (2008) Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci 115:141–150

    CAS  Google Scholar 

  • Raederstorff DG, Schlachter MF, Elste V, Weber P (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14(6):326–332

    CAS  PubMed  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institution Ad Hoc. Writing Committee on the Reformulation of the AIN-76A Rodent diet. J Nutr 123:1939–1951

    CAS  PubMed  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  • Rosa DP, Bona S, Simonetto D, Zettler C, Marroni CA, Marroni NP (2010) Melatonin protects the liver and erythrocytes against oxidative stress in cirrhotic rats. Arquivosde Gastroenterologia 47(1):72–78

    Google Scholar 

  • Ruiz AG, Casafont F, Crespo J, Cayón A, Mayorga M, Estebanez A et al (2007) Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: Evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 17(10):1374

    PubMed  Google Scholar 

  • Sharabi Y, Oron-Herman M, Kamari Y, Avni I, Peleg E, Shabtay Z et al (2007) Effect of PPAR-gamma agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am J Hypertens 20(2):206–210

    CAS  PubMed  Google Scholar 

  • Sherlock S (1951) Liver disease. Churchill, London, p 204

    Google Scholar 

  • Shimizu M, Deguchi A, Joe AK, Mckoy JF, Moriwaki H, Weinstein IB (2005) EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J Exp Therap Oncol 5(1):69–78

    Google Scholar 

  • Shrestha S, Ehlers SJ, Lee JY, Fernandez ML, Koo SI (2009) Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats. J Nutr 139(4):640–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonen P, Kotronen A, HallikainenM SK, Makkonen J, Hakkarainen A et al (2011) Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. J Hepatol 54(1):153–159

    CAS  PubMed  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tacer FK, Rozman D (2011) Nonalcoholic fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids 783976:14

    Google Scholar 

  • Takahashi Y, Soejima K, Hiroshi Inui H, Fukusato T (2012) Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18(19):2300

    PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Sugimoto K, Hiroshi Inui H, Fukusato T (2015) Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 21(13):3777–3785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Ye X, Zhang R, Long J, Ren W, Ding S et al (2013) Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway. PLoS ONE 8(1):53796

    Google Scholar 

  • Tipoe GL, Ho CT, Liong EC, Leung TM, Lau TY, Fung ML et al (2009) Voluntaryoral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD). Histol Histopathol 24:1161–1169

    CAS  PubMed  Google Scholar 

  • Tran A, Gual P (2013) Non-alcoholic steatohepatitis in morbidly obese patients. Clin Res Hepatol Gastroenterol 37:17–29

    PubMed  Google Scholar 

  • Tsochatzis EA, Papatheodoridis GV, Archimandritis AJ (2009) Adipokines in nonalcoholic steatohepatitis: from pathogensis to implications in diagnosis and therapy. Mediat Inflamm 831670:8

    Google Scholar 

  • Unek IT, Bayraktar F, Solmaz D, Ellidokuz H, Sisman AR, Yuksel F et al (2005) The levels of soluble CD40 ligand and C-reactive protein in normal weight, overweight and obese people. Clin Med Res 8:89–95

    Google Scholar 

  • Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15(18):1840–1850

    PubMed Central  Google Scholar 

  • Videla L (2009) Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World J Hepatol 1:72–78

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ho CT (2009) Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 57:8109–8114

    CAS  PubMed  Google Scholar 

  • Wang Y, Mei Y, Feng D, Xu L (2006) (–)-Epigallocatechin-3-gallate protects mice from concanavalin A-induced hepatitis through suppressing immune-mediated liver injury. Clin Exp Immunol 145(3):485–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamabe N, Kang KS, Hur JM, Yokozawa T (2009) Matcha, a powdered greentea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats. J Med Food 12(4):714–721

    CAS  PubMed  Google Scholar 

  • Yang RZ, Park S, Reagan WJ, Goldstein R, Zhong S, Lawton M et al (2009) Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatology 49(2):598–607

    CAS  PubMed  Google Scholar 

  • Yki-Järvinen H (2005) Fat in the liver and insulin resistance. Ann Med 37:347–356

    PubMed  Google Scholar 

  • Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N et al (2002) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723–1732

    Google Scholar 

  • Yoneda M, Fujii H, Sumida Y, Hyogo H, Itoh Y, Ono M et al (2011) Platelet count for predicting fibrosis in nonalcoholic fatty liver disease. J Gastroenterol 46:1300–1306

    PubMed  Google Scholar 

  • Yu J, Ip E, Delapecna A, Hou JY, Sesha J, Pera N et al (2006) Steatohepatitis: role as pro-inflammatory mediator. Hepatology 43:826–836

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Research Centre thesis fund (Grant Number 7/5/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safaa H. Mohamed.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Ethical approval

All animal experiments were conducted in accordance with the Ethics Committee of the National Research Centre, Egypt, which gives its consent (Approval No: 09/203) in accordance with the National Regulation of Animal Welfare and Institutional Animal Ethical Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S.H., Shahat, A.A., Mohamed, M.R. et al. Camellia sinesis leaves extract ameliorates high fat diet-induced nonalcoholic steatohepatitis in rats: analysis of potential mechanisms. J. Pharm. Investig. 51, 183–197 (2021). https://doi.org/10.1007/s40005-020-00500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-020-00500-0

Keywords

  • Nonalcoholic steatohepatitis
  • Camellia sinensis
  • Hyperlipidemia
  • Inflammation
  • Rats