Skip to main content

Advertisement

Log in

High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

Ondansetron hydrochloride (OND) suffers from rapid elimination (t1/2 = 3–4 h), moderate bioavailability (60%) and inconvenience following oral administration in emetic patients. As an alternative convenient approach, the current work explored the potential of high-frequency ultrasound (HFU) waves to promote transdermal delivery of OND via bilosomal gel systems (BGS) in an attempt to increase OND bioavailability and achieve a rapid onset of action in patients suffering from emesis.

Methods

OND-loaded BGS were prepared and characterized for pH and rheologic properties. The variables influencing HFU were optimized, viz. bilosomal system: coupling-gel ratio (1:2 or 1:3), application period (5, 10 or 15 min) and (iii) ultrasound intensity (medium or high), mode (continuous or pulsed) & duty cycle (20, 50 or 100%). Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted. The best achieved BGS (BGS10-HFU) was subjected to histopathologic and pharmacokinetic studies in rats.

Results

OND-loaded BGS were shear thinning systems having tolerable pH values for skin application. The optimized HFU variables involved the utilization of a bilosomal system: coupling-gel ratio of 1:3 and the application of high intensity, continuous and 100% duty cycle ultrasound waves for 10 min. Ex-vivo permeation and CLSM studies revealed the superiority of BGS10 following HFU-pretreatment. BGS10-HFU exhibited minor histopathologic changes. Compared to an oral OND solution, BGS10-HFU system had significantly (P < 0.05) higher AUC0–24 and AUC 0–∞values. Non-significant differences between Cmax and tmax values were revealed.

Conclusion

The best achieved system (BGS10-HFU) can increase OND bioavailability and initiate a rapid onset of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-Elbary A, Tadros MI, Alaa-Eldin AA (2011) Development and in vitro/in vivo evaluation of etodolac controlled porosity osmotic pump tablets. AAPS PharmSciTech 12(2):485–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ (2013) Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces 101(1):143–151

    CAS  PubMed  Google Scholar 

  • Aldwaikat M, Alarjah M (2015) Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3d skin equivalent. Ultrason Sonochem 22:580–587

    CAS  PubMed  Google Scholar 

  • Alexander A, Dwivedi S, Ajazuddin GTK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164(1):26–40

    CAS  PubMed  Google Scholar 

  • Al-Mahallawi AM, Abdelbary AA, Aburahma MH (2015) Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 485(1–2):329–340

    CAS  PubMed  Google Scholar 

  • Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Noshi SH (2012) Topical liquid crystalline gel containing lornoxicam/cyclodextrin complex. J Incl Phenom Macrocycl Chem 73(1–4):161–175

    CAS  Google Scholar 

  • Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Ghoneim AM (2013) Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharm Dev Technol 18(5):1005–1016

    CAS  PubMed  Google Scholar 

  • Ammar HO, Mohamed MI, Tadros MI, Fouly AA (2018) Transdermal delivery of ondansetron hydrochloride via bilosomal systems: in vitro, ex vivo, and in vivo characterization studies. AAPS PharmSciTech 19(5):2276–2287

    CAS  PubMed  Google Scholar 

  • Bommannan D, Okuyama H, Stauffer P, Guy RH (1992) Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res 9(4):559–564

    CAS  PubMed  Google Scholar 

  • Boucaud A, Tessier L, Machet L, Vaillant L, Patat F (2000) Transdermal delivery of insulin using low frequency ultrasound. Proc IEEE Ultrasonics Symp 2:1453–1456

    Google Scholar 

  • Boucaud A, Machet L, Arbeille B, Machet MC, Sournac M, Mavon A, Patat F, Vaillant L (2001a) In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm 228(1–2):69–77

    CAS  PubMed  Google Scholar 

  • Boucaud A, Montharu J, Machet L, Arbeille B, Machet MC, Patat F, Vaillant L (2001b) Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat Rec 264(1):114–119

    CAS  PubMed  Google Scholar 

  • El-Kamel AH, Al-Fagih IM, Alsarra IA (2008) Effect of sonophoresis and chemical enhancers on testosterone transdermal delivery from solid lipid microparticles: an in vitro study. Curr Drug Deliv 5(1):20–26

    CAS  PubMed  Google Scholar 

  • Elmeshad AN, Tadros MI (2011) Transdermal delivery of an anti-cancer drug via W/O emulsions based on alkyl polyglycosides and lecithin: Design, characterization, and in vivo evaluation of the possible irritation potential in rats. AAPS PharmSciTech 12(1):1–9

    CAS  PubMed  Google Scholar 

  • El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB (2018) Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: in-vitro and in-vivo evaluation. Curr Drug Deliv 15(1):122–133

    CAS  PubMed  Google Scholar 

  • Gwak HS, Oh IS, Chun IK (2004) Transdermal delivery of ondansetron hydrochloride: effects of vehicles and penetration enhancers. Drug Dev Ind Pharm 30(2):187–194

    CAS  PubMed  Google Scholar 

  • Hathout RM, Nasr M (2013) Transdermal delivery of betahistine hydrochloride using microemulsions: physical characterization, biophysical assessment, confocal imaging and permeation studies. Colloids Surf B Biointerfaces 110:254–260

    CAS  PubMed  Google Scholar 

  • Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK (2012) Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm 423(2):289–296

    CAS  PubMed  Google Scholar 

  • Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN (2015) Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther 9:3867–3876

    CAS  PubMed  PubMed Central  Google Scholar 

  • ITA K (2017) Recent progress in transdermal sonophoresis. Pharm Dev Technol 22(4):458–466

    CAS  PubMed  Google Scholar 

  • Langer M, Lewis S, Fleshman S, Lewis G (2013) “SonoBandage” a transdermal ultrasound drug delivery system for peripheral neuropathy. J Acoust Soc Am 133(5):3497

    Google Scholar 

  • Larrañeta E, Lutton REM, Brady AJ, Vicente-Pérez EM, Woolfson AD, Thakur RRS, Donnelly RF (2015) Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications. Macromol Mater Eng 300(6):586–595

    PubMed  PubMed Central  Google Scholar 

  • Lee KL, Zhou Y (2015) Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size. J Ultrasound Med 34(3):519–526

    PubMed  Google Scholar 

  • Ma X, Fang L, Guo J, Zhao N, He Z (2010) Effect of counter-ions and penetration enhancers on the skin permeation of flurbiprofen. J Pharm Sci 99(4):1826–1837

    CAS  PubMed  Google Scholar 

  • Malakar J, Nayak AK, Basu A (2012) Ondansetron HCl microemulsions for transdermal delivery: formulation and in vitro skin permeation. ISRN Pharm 2012:1–6

    Google Scholar 

  • Manikkath J, Hegde AR, Kalthur G, Parekh HS, Mutalik S (2017) Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int J Pharm 521(1–2):110–119

    CAS  PubMed  Google Scholar 

  • Merino G, Kalia YN, Guy RH (2003) Ultrasound-enhanced transdermal transport. J Pharm Sci 92(6):1125–1137

    CAS  PubMed  Google Scholar 

  • Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS (2012) Overview of therapeutic ultrasound applications and safety considerations. J ultrasound Med 31(4):623–634

    PubMed  PubMed Central  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1996) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13(3):411–420

    CAS  PubMed  Google Scholar 

  • Ngawhirunpat T, Subongkot T, Rojanarata T, Opanasopit P, Pamornpathomkul B (2014) Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes. Int J Nanomed 9:3539

    Google Scholar 

  • Panigrahi L, Ghosal SK, Pattnaik S, Maharana L, Barik ABB (2006) Effect of permeation enhancers on the release and permeation kinetics of lincomycin hydrochloride gel formulations through mouse skin. Indian J Pharm Sci 68(2):205–211

    CAS  Google Scholar 

  • Park D, Ryu H, Kim HS, Kim Y, Choi K-S, Park H, Seo J (2012) Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study. Ultrasound Med Biol 38(4):642–650

    PubMed  Google Scholar 

  • Pereira TA, Ramos DN, Lopez RF (2017) Hydrogel increases localized transport regions and skin permeability during low frequency ultrasound treatment. Sci Rep 7:44236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pugliese D, Maiorano E, Pascone M (2013) Histopathological features of tissue alterations induced by low frequency ultrasound with cavitational effects on human adipose tissue. Int J Immunopathol Pharmacol 26(2):541–547

    CAS  PubMed  Google Scholar 

  • Polat BE, Blankschtein D, Langer R (2010) Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv 7(12):1415–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polat BE, Hart D, Langer R, Blankschtein D (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 3:330–348

    Google Scholar 

  • Shahin M, Hady SA, Hammad M, Mortada N (2011) Novel jojoba oil-based emulsion gel formulations for clotrimazole delivery. AAPS PharmSciTech 12(1):239–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shamma RN, Aburahma MH (2014) Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia. Int J Nanomed 9:5449–5460

    CAS  Google Scholar 

  • Shukla A, Singh B, Katare OP (2011) Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol 164(2b):820–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukr MH, Metwally GF (2013) Evaluation of topical gel bases formulated with various essential oils for antibacterial activity against methicillin- resistant staphylococcus aureus. Trop J Pharm Res 12(6):877–884

    Google Scholar 

  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH (2016) Duodenum-triggered delivery of pravastatin sodium: II Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions. Drug Deliv 23(9):3266–3278

    CAS  PubMed  Google Scholar 

  • Ubaid M, Ilyas S, Mir S, Khan AK, Rashid R, Khan MZU, Kanwal ZG, Nawaz A, Shah A, Murtaza G (2016) Formulation and in vitro evaluation of carbopol 934-based modified clotrimazole gel for topical application. An Acad Bras Cienc 88(4):2303–2317

    CAS  PubMed  Google Scholar 

  • Yang JH, Kim DK, Yun MY, Kim TY, Shin SC (2006) Transdermal delivery system of triamcinolone acetonide from a gel using phonophoresis. Arch Pharm Res 29(5):412–417

    CAS  PubMed  Google Scholar 

  • Yuan Y, Li S, Mo F, Zhong D (2006) Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm 321(1–2):117–123

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ibrahim Tadros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

The animal studies were performed after receiving approval of the research ethics committee for experimental and clinical studies at the Faculty of Pharmacy, Future University in Egypt (Approval Number: REC-FPSPI-2/15).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.O., Mohamed, M.I., Tadros, M.I. et al. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies. J. Pharm. Investig. 50, 613–624 (2020). https://doi.org/10.1007/s40005-020-00491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-020-00491-y

Keywords

Navigation