Skip to main content

Advertisement

Log in

Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Hyaluronic acid (HA) has been widely used as one of major components of nanocarriers for cancer imaging and therapy. HA possesses hydrophilic and anionic properties at physiological pH and its molecular weight can affect the physicochemical and mechanical behaviors. HA or HA derivatives can be processed into the nanocarriers with other functional materials, drug cargos, and imaging agents by several preparation methods. Moreover, its biocompatibility and biodegradability can increase its feasibility for clinical application.

Area covered

Physicochemical and biological properties of HA are summarized in this review. Based on those properties, various types of HA nanosystems can be designed for CD44 receptor-positive cancer imaging and therapy. Recent progresses in HA-drug conjugates, HA-based nanoparticles (NPs), and HA-decorated NPs for cancer imaging and therapy are provided.

Expert opinion

Together with well-known biocompatibility/biodegradability and CD44 receptor-positive tumor targetability, expandability in chemical modification of HA and fabrication of HA-based nanosystems may elevate their possibility of clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akima K, Ito H, Iwata Y, Matsuo K, Watari N et al (1996) Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity. J Drug Target 4(1):1–8

    CAS  PubMed  Google Scholar 

  • Arpicco S, Milla P, Stella B, Dosio F (2014) Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment. Molecules 19(3):3193–3230

    PubMed  PubMed Central  Google Scholar 

  • Bae KH, Tan S, Yamashita A, Ang WX, Gao SJ et al (2017) Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials 148:41–53

    CAS  PubMed  Google Scholar 

  • Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47(2):152–169

    CAS  PubMed  Google Scholar 

  • Cai S, Xie Y, Bagby TR, Cohen MS, Forrest ML (2008) Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate. J Surg Res 147(2):247–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Thati S, Bagby TR, Diab HM, Davies NM et al (2010) Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control Release 146(2):212–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, He N, Chen M, Zhao L, Li X (2016) Tunable conjugation densities of camptothecin on hyaluronic acid for tumor targeting and reduction-triggered release. Acta Biomater 43:195–207

    CAS  PubMed  Google Scholar 

  • Chen J, Ouyang J, Chen Q, Deng C, Meng F et al (2017) EGFR and CD44 dual-targeted multifunctional hyaluronic acid nanogels boost protein delivery to ovarian and breast cancers in vitro and in vivo. ACS Appl Mater Interfaces 9(28):24140–24147

    CAS  PubMed  Google Scholar 

  • Chen YT, Chen Z, Du YN (2018a) Immunohistochemical analysis of RHAMM expression in normal and neoplastic human tissues: a cell cycle protein with distinctive expression in mitotic cells and testicular germ cells. Oncotarget 9(30):20941–20952

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Peng F, Song X, Wu J, Yao W et al (2018b) Conjugation of paclitaxel to C-6 hexanediamine-modified hyaluronic acid for targeted drug delivery to enhance antitumor efficacy. Carbohydr Polym 181:150–158

    CAS  PubMed  Google Scholar 

  • Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS et al (2011) Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 32(29):7181–7190

    CAS  PubMed  Google Scholar 

  • Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS et al (2012a) Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J Control Release 162(1):111–118

    CAS  PubMed  Google Scholar 

  • Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ et al (2012b) Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33(4):1190–1200

    CAS  PubMed  Google Scholar 

  • Choi KY, Chung H, Min KH, Yoon HY, Kim K et al (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31(1):106–114

    CAS  PubMed  Google Scholar 

  • Cichy J, Puré E (2003) The liberation of CD44. J Cell Biol 161(5):839–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SM, Rockefeller N, Mukerji R, Durham D, Forrest ML et al (2013) Efficacy and toxicity of peritumoral delivery of nanoconjugated cisplatin in an in vivo murine model of head and neck squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg 139(4):382–387

    PubMed  PubMed Central  Google Scholar 

  • Coradini D, Pellizzaro C, Miglierini G, Daidone MG, Perbellini A (1999) Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer 81(3):411–416

    CAS  PubMed  Google Scholar 

  • Debele TA, Yu LY, Yang CS, Shen YA, Lo CL (2018) pH- and GSH-sensitive hyaluronic acid-MP conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells. Biomacromol 19(9):3725–3737

    CAS  Google Scholar 

  • Deng X, Cao M, Zhang J, Hu K, Yin Z et al (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35(14):4333–4344

    CAS  PubMed  Google Scholar 

  • Dosio F, Arpicco S, Stella B, Fattal E (2016) Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 97:204–236

    CAS  PubMed  Google Scholar 

  • Du J, Lane LA, Nie S (2015) Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 219:205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du F, Lou J, Jiang R, Fang Z, Zhao X et al (2017) Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int J Nanomed 12:5973–5992

    CAS  Google Scholar 

  • Dubey RD, Klippstein R, Wang JT, Hodgins N, Mei KC et al (2017) Novel hyaluronic acid conjugates for dual nuclear imaging and therapy in CD44-expressing tumors in mice in vivo. Nanotheranostics 1(1):59–79

    PubMed  PubMed Central  Google Scholar 

  • Ernsting MJ, Murakami M, Roy A, Li SD (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172(3):782–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhari A, Berkland C (2013) Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 9(7):7081–7092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Zhao X, Qu X, Fang J (2015) pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect. Int J Pharm 496(2):644–653

    CAS  PubMed  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    CAS  PubMed  Google Scholar 

  • Fraser JRE, Appelgren LE, Laurent TC (1983) Tissue uptake of circulating hyaluronic acid—a whole body autoradiographic study. Cell Tissue Res 233:285–293

    CAS  PubMed  Google Scholar 

  • Girma WM, Tzing SH, Tseng PJ, Huang CC, Ling YC et al (2018) Synthesis of Cisplatin(IV) prodrug-tethered CuFeS2 nanoparticles in tumor-targeted chemotherapy and photothermal therapy. ACS Appl Mater Interfaces 10(5):4590–4602

    CAS  PubMed  Google Scholar 

  • Gu J, Chen X, Ren X, Zhang X, Fang X et al (2016) CD44-targeted hyaluronic acid-coated redox-responsive hyperbranched poly(amido amine)/plasmid DNA ternary nanoassemblies for efficient gene delivery. Bioconjug Chem 27(7):1723–1736

    CAS  PubMed  Google Scholar 

  • Gu Z, Wang X, Cheng R, Cheng L, Zhong Z (2018) Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 80:288–295

    CAS  PubMed  Google Scholar 

  • Guimarães PPG, Gaglione S, Sewastianik T, Carrasco RD, Langer R et al (2018) Nanoparticles for immune cytokine TRAIL-based cancer therapy. ACS Nano 12(2):912–931

    PubMed  PubMed Central  Google Scholar 

  • Günthert U, Hofmann M, Rudy W, Reber S, Zöller M et al (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65(1):13–24

    PubMed  Google Scholar 

  • Guo XL, Kang XX, Wang YQ, Zhang XJ, Li CJ et al (2019) Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 84:367–377

    CAS  PubMed  Google Scholar 

  • Gupta B, Poudel BK, Ruttala HB, Regmi S, Pathak S et al (2018) Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomater 80:364–377

    CAS  PubMed  Google Scholar 

  • Han M, Huang-Fu MY, Guo WW, Guo NN, Chen J et al (2017) MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl Mater Interfaces 9(49):42459–42470

    CAS  PubMed  Google Scholar 

  • Huh Y, Cho HJ, Yoon IS, Choi MK, Kim JS et al (2010) Preparation and evaluation of spray-dried hyaluronic acid microspheres for intranasal delivery of fexofenadine hydrochloride. Eur J Pharm Sci 40(1):9–15

    CAS  PubMed  Google Scholar 

  • Hwang DW, Kim HY, Li F, Park JY, Kim D et al (2017) In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials 121:144–154

    CAS  PubMed  Google Scholar 

  • Ito T, Yoshihara C, Hamada K, Koyama Y (2010) DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials 31(10):2912–2918

    CAS  PubMed  Google Scholar 

  • Jc Bose R, Uday Kumar S, Zeng Y, Afjei R, Robinson E et al (2018) Tumor cell-derived extracellular vesicle-coated nanocarriers: an efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano 12(11):10817–10832

    CAS  Google Scholar 

  • Jeong JY, Hong EH, Lee SY, Lee JY, Song JH et al (2017) Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater 53:414–426

    CAS  PubMed  Google Scholar 

  • Ji Y, Shan S, He M, Chu CC (2017) Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid. Acta Biomater 62:234–245

    CAS  PubMed  Google Scholar 

  • Jian YS, Chen CW, Lin CA, Yu HP, Lin HY et al (2017) Hyaluronic acid-nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo. Int J Nanomed 12:2315–2333

    CAS  Google Scholar 

  • Jiang D, Liang J, Noble PW (2011) Hyaluronan as an immune regulator in human diseases. Physiol Rev 91(1):221–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Li M, Hu Y, Zhang Z, Lv H (2018) Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma. Carbohydr Polym 197:194–203

    CAS  PubMed  Google Scholar 

  • Jin YJ, Termsarasab U, Ko SH, Shim JS, Chong S et al (2012) Hyaluronic acid derivative-based self-assembled nanoparticles for the treatment of melanoma. Pharm Res 29(12):3443–3454

    CAS  PubMed  Google Scholar 

  • Jin Y, Ma X, Feng S, Liang X, Dai Z et al (2015) Hyaluronic acid modified tantalum oxide nanoparticles conjugating doxorubicin for targeted cancer theranostics. Bioconjug Chem 26(12):2530–2541

    CAS  PubMed  Google Scholar 

  • Jing L, Shao S, Wang Y, Yang Y, Yue X et al (2016) Hyaluronic acid modified hollow prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer. Theranostics 6(1):40–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, In I, Park SY (2017) pH-Responsive NIR-absorbing fluorescent polydopamine with hyaluronic acid for dual targeting and synergistic effects of photothermal and chemotherapy. Biomacromol 18(6):1825–1835

    CAS  Google Scholar 

  • Kim DE, Kim CW, Lee HJ, Min KH, Kwack KH et al (2018) Intracellular NO-releasing hyaluronic acid-based nanocarriers: a potential chemosensitizing agent for cancer chemotherapy. ACS Appl Mater Interfaces 10(32):26870–26881

    CAS  PubMed  Google Scholar 

  • Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187

    CAS  PubMed  Google Scholar 

  • Lee SY, Cho HJ (2016) Amine-functionalized poly(lactic-co-glycolic acid) nanoparticles for improved cellular uptake and tumor penetration. Colloids Surf B 148:85–94

    CAS  Google Scholar 

  • Lee SY, Cho HJ (2018) An α-tocopheryl succinate enzyme-based nanoassembly for cancer imaging and therapy. Drug Deliv 25(1):738–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Cho HJ (2019) Mitochondria targeting and destabilizing hyaluronic acid derivative-based nanoparticles for the delivery of lapatinib to triple-negative breast cancer. Biomacromol 20(2):835–845

    CAS  Google Scholar 

  • Lee JY, Chung SJ, Cho HJ, Kim DD (2015) Phenylboronic acid-decorated chondroitin sulfate A-based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv Funct Mater 25(24):3705–3717

    CAS  Google Scholar 

  • Lee H, Hong BJ, Lee JH, Yeo S, Jung HY et al (2016a) Hyaluronate-death receptor 5 antibody conjugates for targeted treatment of liver metastasis. Biomacromol 17(9):3085–3093

    CAS  Google Scholar 

  • Lee JY, Termsarasab U, Park JH, Lee SY, Ko SH et al (2016b) Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery. J Control Release 236:38–46

    CAS  PubMed  Google Scholar 

  • Lee SY, Lee JJ, Park JH, Lee JY, Ko SH et al (2016c) Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery. Colloids Surf B 145:267–274

    CAS  Google Scholar 

  • Lee SY, Park JH, Ko SH, Shim JS, Kim DD et al (2017) Mussel-inspired hyaluronic acid derivative nanostructures for improved tumor targeting and penetration. ACS Appl Mater Interfaces 9(27):22308–22320

    CAS  PubMed  Google Scholar 

  • Lee SY, Choi JW, Lee JY, Kim DD, Kim HC et al (2018a) Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor. Drug Deliv 25(1):1472–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Ko SH, Shim JS, Kim DD, Cho HJ (2018b) Tumor targeting and lipid rafts disrupting hyaluronic acid-cyclodextrin-based nanoassembled structure for cancer therapy. ACS Appl Mater Interfaces 10(43):36628–36640

    CAS  PubMed  Google Scholar 

  • Liang X, Fang L, Li X, Zhang X, Wang F (2017) Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy. Biomaterials 132:72–84

    CAS  PubMed  Google Scholar 

  • Liu R, Xiao W, Hu C, Xie R, Gao H (2018) Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release 278:127–139

    CAS  PubMed  Google Scholar 

  • Lv Y, Xu C, Zhao X, Lin C, Yang X et al (2018) Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 12(2):1519–1536

    CAS  PubMed  Google Scholar 

  • Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164(2):138–144

    CAS  PubMed  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    CAS  PubMed  Google Scholar 

  • Mao H, Xie Y, Ju H, Mao H, Zhao L et al (2018) Design of tumor microenvironment-responsive drug-drug micelle for cancer radiochemotherapy. ACS Appl Mater Interfaces 10(40):33923–33935

    CAS  PubMed  Google Scholar 

  • Mattheolabakis G, Milane L, Singh A, Amiji MM (2015) Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target 23(7–8):605–618

    CAS  PubMed  Google Scholar 

  • Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3(6):755–766

    CAS  PubMed  Google Scholar 

  • Menegatti S, Ruocco N, Kumar S, Zakrewsky M, Sanchez De Oliveira J et al (2015) Synthesis and characterization of a self-fluorescent hyaluronic acid-based gel for dermal applications. Adv Healthc Mater 4(15):2297–2305

    CAS  PubMed  Google Scholar 

  • Mero A, Campisi M (2014) Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymer 6:346–369

    Google Scholar 

  • Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS et al (2011) Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 278(9):1429–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montagner IM, Merlo A, Carpanese D, Dalla Pietà A, Mero A et al (2016) A site-selective hyaluronan-interferonα2a conjugate for the treatment of ovarian cancer. J Control Release 236:79–89

    CAS  PubMed  Google Scholar 

  • Oommen OP, Garousi J, Sloff M, Varghese OP (2014) Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: an alternative to prodrug approach. Macromol Biosci 14(3):327–333

    CAS  PubMed  Google Scholar 

  • Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH et al (2014a) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 174:98–108

    CAS  PubMed  Google Scholar 

  • Park JH, Lee JY, Termsarasab U, Yoon IS, Ko SH et al (2014b) Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery. Int J Pharm 473(1–2):426–433

    CAS  PubMed  Google Scholar 

  • Quan YH, Kim B, Park JH, Choi Y, Choi YH et al (2014) Highly sensitive and selective anticancer effect by conjugated HA-cisplatin in non-small cell lung cancer overexpressed with CD44. Exp Lung Res 40(10):475–484

    CAS  PubMed  Google Scholar 

  • Roncato F, Rruga F, Porcù E, Casarin E, Ronca R et al (2018) Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the avidin-nucleic-acid-nano-assemblies. Nat Commun 9(1):4070

    PubMed  PubMed Central  Google Scholar 

  • Rosato A, Banzato A, De Luca G, Renier D, Bettella F et al (2006) HYTAD1-p20: a new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol Oncol 24(3):207–215

    CAS  PubMed  Google Scholar 

  • Senbanjo LT, Chellaiah MA (2017) CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol 5:18

    PubMed  PubMed Central  Google Scholar 

  • Serafino A, Zonfrillo M, Andreola F, Psaila R, Mercuri L et al (2011) CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr Cancer Drug Targets 11(5):572–585

    CAS  PubMed  Google Scholar 

  • Shahin SA, Wang R, Simargi SI, Contreras A, Parra Echavarria L et al (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine 14(4):1381–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Shi S, Zhang Z, Gong T, Sun X (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5(7):755–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanello TF, Couturaud B, Szarpak-Jankowska A, Fournier D, Louage B et al (2017) Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy. Nanoscale 9(33):12150–12162

    CAS  PubMed  Google Scholar 

  • Stern R (2004) Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol 83(7):317–325

    CAS  PubMed  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715

    CAS  PubMed  Google Scholar 

  • Su Y, Liu Y, Xu X, Zhou J, Xu L et al (2018) On-demand versatile prodrug nanomicelle for tumor-specific bioimaging and photothermal-chemo synergistic cancer therapy. ACS Appl Mater Interfaces 10(45):38700–38714

    CAS  PubMed  Google Scholar 

  • Suh MS, Shen J, Kuhn LT, Burgess DJ (2017) Layer-by-layer nanoparticle platform for cancer active targeting. Int J Pharm 517(1–2):58–66

    CAS  PubMed  Google Scholar 

  • Tiwari S, Bahadur P (2019) Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 121:556–571

    CAS  PubMed  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539

    CAS  PubMed  Google Scholar 

  • Tripodo G, Trapani A, Torre ML, Giammona G, Trapani G et al (2015) Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur J Pharm Biopharm 97(Pt B):400–416

    CAS  PubMed  Google Scholar 

  • Tseng SJ, Kempson IM, Huang KY, Li HJ, Fa YC et al (2018) Targeting tumor microenvironment by bioreduction-activated nanoparticles for light-triggered virotherapy. ACS Nano 12(10):9894–9902

    CAS  PubMed  Google Scholar 

  • Wang G, Zhang F, Tian R, Zhang L, Fu G et al (2016) Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy. ACS Appl Mater Interfaces 8(8):5608–5617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Xie J, Luo Y, Ma Y, Tang S et al (2018) Hyaluronic acid based nanocrystals hydrogels for enhanced topical delivery of drug: a case study. Carbohydr Polym 202:64–71

    CAS  PubMed  Google Scholar 

  • Wen Y, Oh JK (2014) Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun 35(21):1819–1832

    CAS  PubMed  Google Scholar 

  • Woo JS, Piao MG, Li DX, Ryu DS, Choi JY et al (2007) Development of cyclosporin A-loaded hyaluronic microsphere with enhanced oral bioavailability. Int J Pharm 345(1–2):134–141

    CAS  PubMed  Google Scholar 

  • Wu J, Deng C, Meng F, Zhang J, Sun H et al (2017) Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. J Control Release 259:76–82

    CAS  PubMed  Google Scholar 

  • Xia Y, Guo M, Xu T, Li Y, Wang C (2018) siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int J Nanomed 13:1539–1552

    CAS  Google Scholar 

  • Xu K, Lee F, Gao S, Tan MH, Kurisawa M (2015) Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab. J Control Release 216:47–55

    CAS  PubMed  Google Scholar 

  • Xu W, Qian J, Hou G, Suo A, Wang Y et al (2017) Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer. ACS Appl Mater Interfaces 9(42):36533–36547

    CAS  PubMed  Google Scholar 

  • Yang Q, Aires DJ, Cai S, Fraga GR, Zhang D et al (2014) In vivo efficacy of nano hyaluronan-conjugated cisplatin for treatment of murine melanoma. J Drugs Dermatol 13(3):283–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Jing L, Li X, Lin L, Yue X et al (2017a) Hyaluronic acid conjugated magnetic prussian blue@quantum dot nanoparticles for cancer theranostics. Theranostics 7(2):466–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Li C, Zhang P, Wu W, Jiang X (2017b) Redox responsive hyaluronic acid nanogels for treating RHAMM (CD168) over-expressive cancer, both primary and metastatic tumors. Theranostics 7(6):1719–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin T, Wang Y, Chu X, Fu Y, Wang L et al (2018) Free adriamycin-loaded pH/reduction dual-responsive hyaluronic acid-adriamycin prodrug micelles for efficient cancer therapy. ACS Appl Mater Interfaces 10(42):35693–35704

    CAS  PubMed  Google Scholar 

  • Zhang W, Tung CH (2017) Cisplatin cross-linked multifunctional nanodrugplexes for combination therapy. ACS Appl Mater Interfaces 9(10):8547–8555

    CAS  PubMed  Google Scholar 

  • Zhang H, Li W, Guo X, Kong F, Wang Z et al (2017) Specifically increased paclitaxel release in tumor and synergetic therapy by a hyaluronic acid-tocopherol nanomicelle. ACS Appl Mater Interfaces 9(24):20385–20398

    CAS  PubMed  Google Scholar 

  • Zhang MK, Li CX, Wang SB, Liu T, Song XL et al (2018) Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy. Small 14(50):1803602

    Google Scholar 

  • Zhou J, Li M, Hou Y, Luo Z, Chen Q et al (2018) Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 12(3):2858–2872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning and the Ministry of Education (Nos. 2017R1E1A1A01074584 and 2018R1A6A1A03025582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Jong Cho.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J. Pharm. Investig. 50, 115–129 (2020). https://doi.org/10.1007/s40005-019-00448-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-019-00448-w

Keywords

Navigation