Skip to main content
Log in

Tailoring of anticancer drugs loaded in MWCNT/Poly(MMA-co-HEMA) nanosphere composite by using in situ microemulsion polymerization

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Synthesis of multi-walled carbon nanotube (MWCNT)/Poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) P(MMA-co-HEMA) nanocomposite loaded with either of curcumin and its water soluble derivative as two models of anticancer drugs was achieved via in situ microemulsion polymerization technique by using different ratios from multi-walled carbon nanotube MWCNT to drug. The homogenous dispersion of MWCNTs inside the polymer matrix and well defined nano-spheres were proved by TEM and X-ray diffraction XRD. The performance of MWCNT/polymer nanocomposite as drug carrier was examined with respect to the drug content, entrapment efficiency, nano-sphere morphology, thermal stability and in-vitro drug release. Drugs could be loaded in higher content with high Entrapment Efficiency values with improved thermal stability that increased with MWCNT ratio. The in-vitro drug release studies from MWCNT/Poly(MMA-co-HEMA) nanocomposite showed prolonged controlled release in the intestinal fluid pH 7.4 and lost a few amount ≤ 8% of the drug in the stomach fluid pH 1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albalawi AM, Mohamed WS, Elsayed NH (2016) Utilization of MMT clay and MMT-Chitosan for platinol drug delivery. Der Pharm Chem 8(23):27–34

    CAS  Google Scholar 

  • Al-Osaimi J, Alhosiny N, Badawi A, Abdallah S (2013) The effects of CNTs types on the structural and electrical properties of CNTs/PMMA nanocomposite films. Int J Eng Technol 13:77–79

    Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  • Athira GK, Jyothi AN (2014) Preparation and characterization of curcumin loaded cassava starch nanoparticles with improved cellular absorption. Int J Pharm Pharm Sci 6:171–176

    CAS  Google Scholar 

  • Baviskar DT, Tamkhane CM, Maniyar AH, Jain DK (2012) Carbon nanotubes: an emerging drug delivery tool in nanotechnology. Int J Pharm Pharm Sci 4:11–15

    CAS  Google Scholar 

  • Blond D, Barron V, Ruether M, Ryan KP, Nicolosi V, Blau WJ, Cole-man JN (2006) Enhancement of modulus, strength, and toughness in poly(methylmethacrylate) based composites by the incorporation of poly(methyl methacrylate) functionalized nanotubes. Adv Funct Mater 16:1608–1614

    Article  CAS  Google Scholar 

  • Cartiera MS, Ferreira EC, Caputo C, Egan ME, Caplan M (2010) Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. J Mol Pharm 7:86–93

    Article  CAS  Google Scholar 

  • Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H, Liu N, Wang X, Jiao Z, Chen Z (2009) Morphology and in vitro release kinetics of drug-loaded micelles based on well-defined PMPC-b-PBMA copolymer. Int J Pharm 371:190–196

    Article  CAS  PubMed  Google Scholar 

  • Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  • Daum N, Tscheka C, Schneider ANM (2012) Novel approaches for drug delivery system in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev 4:52–65

    CAS  Google Scholar 

  • Donsi F, Wang Y, Li J, Huang Q (2010) Preparation of curcumin sub-micrometer dispersions by high-pressure homogenization. J Agric Food Chem 58:2848–5283

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Zhang Y, Han S, Chen Y, Li B, Liao M et al (2010) Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm 400:211–220

    Article  CAS  PubMed  Google Scholar 

  • Foillard S, Zuber G, Doris E (2011) Polyethylenimine-carbon nanotube nanohybrids for RNA-mediated gene silencing at cellular level. Nanoscale 3:1461–1464

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharm 75:787–809

    Article  CAS  PubMed  Google Scholar 

  • Gopi G, Kannan K (2015) Fabrication and in vitro evaluation of nateglinide-loaded ethyl cellulose nanoparticles. Asian J Pharm Clin Res 8:93–96

    CAS  Google Scholar 

  • Hanumansetty S, O’Rear E, Resasco DE (2015) Hydrophilic encapsulation of multi-walled carbon nanotubes using admicellar polymerization. Colloids Surf A 474:1–8

    Article  CAS  Google Scholar 

  • Hibino N, Suzuki S, Wakahara H, Kobayashi Y, Sato T, Maki H (2011) Short-wavelength electroluminescence from single-walled carbon nanotubes with high bias voltage. ACS Nano 5:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Jia YX, Li HL, Wang M, Wu LY,.Hu YD (2010) Carbon nanotube: possible candidate for forward osmosis. Sep Purif Technol 75:55–60

    Article  CAS  Google Scholar 

  • Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV (2009) Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm 374:53–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar SSD, Mahadevan S, Vijayaraghavan R, Mandal AB, MacFarlane DR (2014) Curcumin loaded poly(2-hydroxyethlene methacrylate) nanoparticles from gelled ionic liquid—in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. J Pharm Sci 51:34–44

    CAS  Google Scholar 

  • Kumar A, Singh M, Singh PP, Singh SK, Raj P, Pandey KD (2016) Antioxidant efficacy and curcumin content of turmeric (Curcuma-Longa L.) flower. Int J Curr Pharm Res 8:112–114

    CAS  Google Scholar 

  • Lafuente E, Callejas MA, Saınz R, Benito AM, Maser WK, Sanjuan ML (2008) The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites. Carbon 46:1909–1917

    Article  CAS  Google Scholar 

  • Li M, Wang X, Tian R, Liu F, Hu H, Chen R (2009) Preparation, solubility, and electro rheological properties of carbon nanotubes/poly(methyl methacrylate) nanocomposites by in situ fictionalization. Compos Part A 40:413–417

    Article  CAS  Google Scholar 

  • Lin YL, Liu YK, Tsai NM, Hsieh JH, Chen CH, Lin CM, Liao KW (2012) A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomed Nanotechnol 8:318–327

    Article  CAS  Google Scholar 

  • Liu L, Sun L, Wu Q, Guo W, Li L, Chen Y (2013) Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm 443:175–182

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32:6316–6323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali N, Jadhav S, Karpe M, Kadam V (2011) Carbon nanotubes as carriers for delivery of bioactive and therapeutic agents: an overview. Int J Pharm Pharm Sci 3:45–52

    Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE 7:32–61

    Google Scholar 

  • McNicholas TP, Yum K, Ahn JH, Mu B, Plettenburg O, Gooderman A (2012) Structure and function of glucose binding protein-single walled carbon nanotube complexes. Small 8:3510–3516

    Article  CAS  PubMed  Google Scholar 

  • Mohamed WS, Mostafa AB, Nasr HE (2014) Characterization and application of intercalated montmorillonite with verapamil and its polymethyl methacrylate nanocomposite in drug delivery. Polym Plast Technol Eng 53(14):1425–1433

    Article  CAS  Google Scholar 

  • Moustafa AB, Sobh RA, Rabie AM, Nasr HE, Ayoub MMH (2013a) Differential microemulsion polymerization as a new root for entrapment of drugs. J Appl Polym Sci 127:4634–4643

    Article  CAS  Google Scholar 

  • Moustafa AB, Sobh RA, Rabie AM, Nasr HE, Ayoub MMH (2013b) Synthesis and in vitro release of guest drugs-loaded copolymer nanospheres MMA/HEMA via differential microemulsion polymerization. J Appl Polym Sci 129:853–865

    Article  CAS  Google Scholar 

  • Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29:3867–3875

    CAS  PubMed  Google Scholar 

  • Rezq AM, Abdel Aziz MT, Al-Malki AL (2011) Gelatin, a novel curcumin drug carrier system. WO/2011/100984. https://www.google.com/patents/WO2011100984A1?cl=en

  • Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    Article  CAS  PubMed  Google Scholar 

  • Shang S, Li L, Yang X, Wei Y (2009) Polymethylmethacrylate-carbon nanotubes composites prepared by microemulsion polymerization for gas sensor. Compos Sci Technol 69:1156–1159

    Article  CAS  Google Scholar 

  • Sharma S, Saraogi GK, Kumar V (2015) Development of spectrophotometric methods for simultaneous determination of artesunate and curcumin in a liposomal formulation. Int J App Pharm 7:18–21

    CAS  Google Scholar 

  • Shen J, Yu C, Ruan H, Gao C, Bruggen BV (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J Membr Sci 442:18–26

    Article  CAS  Google Scholar 

  • Sobh RA, Mohamed WS, Moustafa AB, Nasr HE (2015) Encapsulation of curcumin and curcumin derivative in polymeric nanospheres. Polym Plast Technol Eng 54:1457–1467

    Article  CAS  Google Scholar 

  • Spitalsky Z, Tasisb D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  • Thompson CJ, Hansford D, Higgins S, Rostron C, Hutcheon GA, Munday DL (2007) Evaluation of ibuprofen-loaded microspheres prepared from novel copolyesters. Int J Pharm 329:53–61

    Article  CAS  PubMed  Google Scholar 

  • Thorat YS, Sarvagod AM, Kulkarni SV, Hosmani AH (2015) Treatment of mouth ulcer by curcumin loaded thermoreversible mucoadhesive gel: a technical note. Int J Pharm Pharm Sci 7:399–402

    CAS  Google Scholar 

  • Valot P, Baba M, Nedelec J-M, Sintes-Zydowicz N (2009) Effects of process parameters on the properties of biocompatible ibuprofen-loaded microcapsules. Int J Pharm 369:53–63

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li J, Zhang X, Ouyang Z, Li Q, Su Z, Wei G (2013) Synthesis, characterization and drug release application of carbon nanotube-polymer nanosphere composites. RSC Adv 3:9304–9310

    Article  CAS  Google Scholar 

  • Wei G, Pan C, Reichert J, Jandt KD (2010) Controlled assembly of protein-protected gold nanoparticles on noncovalent functionalized carbon nanotubes. Carbon 48:645–653

    Article  CAS  Google Scholar 

  • Wei G, Xu F, Li Z, Jandt KD (2011a) Protein-promoted synthesis of Pt nanoparticles on carbon nanotubes for electrocatalytic nanohybrids with enhanced glucose sensing. J Phys Chem C 115:1153–1160

    Article  CAS  Google Scholar 

  • Wei G, Zhang J, Xie L, Jandt KD (2011b) Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers. Carbon 49:2216–2226

    Article  CAS  Google Scholar 

  • Xiao X, Wang Y (2009) Emulsion copolymerization of fluorinated acrylate in the presence of a polymerizable emulsifier. Colloids Surf A 348:151–156

    Article  CAS  Google Scholar 

  • Yang L, Zhang X, Ye M (2011) Aptamer- conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63:1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding agencies National Research centre, Egypt (Project Number 10140004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Mohamed.

Ethics declarations

Conflict of interest

All authors declare that they have no conflictof interest.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobh, R.A., Nasr, H.E., Moustafa, A.B. et al. Tailoring of anticancer drugs loaded in MWCNT/Poly(MMA-co-HEMA) nanosphere composite by using in situ microemulsion polymerization. J. Pharm. Investig. 49, 45–55 (2019). https://doi.org/10.1007/s40005-018-0390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-018-0390-8

Keywords

Navigation