Journal of Pharmaceutical Investigation

, Volume 47, Issue 1, pp 75–83 | Cite as

Dioxadet-loaded nanogels as a potential formulation for glioblastoma treatment

  • Roman Voeikov
  • Tatiana Abakumova
  • Nadezhda Grinenko
  • Pavel Melnikov
  • Vladimir Bespalov
  • Alexander Stukov
  • Vladimir Chekhonin
  • Natalia Klyachko
  • Natalia Nukolova
Original Article
  • 118 Downloads

Abstract

Glioblastoma multiforme is a fast-growing malignant brain tumor with poor prognosis and low survival rate. Here we investigated the potential use of anticancer drug dioxadet loaded into nanogels for glioma treatment. We used block copolymer of polyethylene glycol and polymethacrylic acid for synthesis of dioxadet carriers and two types of cross-linking agents: non-degradable ethylenediamine and biodegradable cystamine, containing disulfide bond. We analyzed physicochemical properties of nanoparticles, their loading capacity, cytotoxicity of drug-loaded nanogels, and also their internalization into glioma cells. We found the optimal conditions that promote the efficient loading of the drug. We demonstrated that dioxadet loaded nanogels have relatively high level of loading capacity (>35% w/w) and loading efficiency (>75%). We shown that nanogels with the biodegradable cross-links prone to dissociate under reducing conditions (glutathione) that allow to decrease IC50 values of the drug compared to the nanogels with ethylendiamine cross-links. This stimuli-sensitive behavior of nanogels could be beneficial for tumor treatment. Confocal analysis of glioma cells demonstrated that both types of nanogels accumulate in cells and localize in lysosomes. These results indicate that loading of dioxadet into nanoparticles can improve its performance; such formulation has a potential for further studies and practical applications.

Keywords

Dioxadet Nanogels Disulfide bonds Cystamine Glioblastoma Drug delivery 

References

  1. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem 16:122–130. doi:10.1021/bc0498166 CrossRefGoogle Scholar
  2. Bennis S, Chapey C, Couvreur P, Robert J (1994) Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer 30:89–93. doi:10.1016/S0959-8049(05)80025-5 CrossRefGoogle Scholar
  3. Bespalov VG, Zhabin AA, Stukov AN, Beljaeva OA, Murazov JaG, Semenov AL, Kon’kov SA, Krylova IM (2013) Synergism of antitumor action of dioxadet and cisplatin in model of ascitic ovarian tumor. Sibirskij Onkol J 55:42–46 (in Russian)Google Scholar
  4. Bodley AL, Liu LF, Israel M, Ramakrishnan S, Yoshihiro K, Giuliani FC, Kirschenbaum S, Silber R, Potmesil M (1989) DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 49:5969–5978PubMedGoogle Scholar
  5. Bontha S, Kabanov AV, Bronich TK (2006) Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Control Release 114:163–174. doi:10.1016/j.jconrel.2006.06.015 CrossRefPubMedGoogle Scholar
  6. Bronich TK, Nehls A, Eisenberg A, Kabanov VA, Kabanov AV (1999) Novel drug delivery systems based on the complexes of block ionomers and surfactants of opposite charge. Coll Surf B Biointerfaces 16:243–251. doi:10.1016/S0927-7765(99)00075-2 CrossRefGoogle Scholar
  7. Bronich TK, Keifer PA, Shlyakhtenko LS, Kabanov AV (2005) Polymer micelle with cross-linked ionic core. J Am Chem Soc 12:8236–8237. doi:10.1021/ja043042m CrossRefGoogle Scholar
  8. Fuertes MA, Castilla J, Alonso C, Perez JM (2003) Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 10:257–266. doi:10.2174/0929867033368484 CrossRefPubMedGoogle Scholar
  9. Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6PubMedGoogle Scholar
  10. Jones RB, Matthes S, Shpall EJ et al (1993) Acute lung injury following treatment with high-dose cyclophosphamide, cisplatin, and carmustine: pharmacodynamic evaluation of carmustine. J Natl Cancer Inst 85:640–647. doi:10.1093/jnci/85.8.640 CrossRefPubMedGoogle Scholar
  11. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429. doi:10.1002/anie.200900441 CrossRefGoogle Scholar
  12. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS (2000) Doxorubicin-loaded poly(ethylene glycol)–poly(b-benzyl-l-aspartate copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153. doi:10.1016/S0168-3659(99)00133-9 CrossRefPubMedGoogle Scholar
  13. Kato N, Hasegawa U, Morimoto N, Saita Y, Nakashima K, Ezura Y, Kurosawa H, Akiyoshi K, Noda M (2007) Nanogel-based delivery system enhances PGE2 effects on bone formation. J Cell Biochem 101:1063–1070. doi:10.1002/jcb.21160 CrossRefPubMedGoogle Scholar
  14. Khiati S, Luvino D, Oumzil K, Chauffert B, Camplo M, Barthelemy P (2011) Nucleoside lipid-based nanoparticles for cisplatin delivery. ACS Nano 11:8649–8655. doi:10.1021/nn202291k CrossRefGoogle Scholar
  15. Kim JO, Kabanov AV, Bronich TK (2009) Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release 138:197–204. doi:10.1016/j.jconrel.2009.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim JO, Sahay G, Kabanov AV, Bronich TK (2010) Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents. Biomacromolecules 11:919–926. doi:10.1021/bm9013364 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kim JO, Ramasamy T, Yong CS, Nukolovа NV, Bronich TK, Kabanov AV (2013) Cross-linked polymeric micelles based on block ionomer complexes. Mendeleev Commun 23:179–186. doi:10.1016/j.mencom.2013.07.001 CrossRefGoogle Scholar
  18. Loshadkin NA, Kurlyandskiy BA, Daryina LV (2002) Toksikologiya alkiliruyushchikh soedineniy. In: Kurlyandskiy BA, Philov VA (ed) Obshchaya toksikologiya. Meditsina, Moscow, pp 236–257 (in Russian)Google Scholar
  19. Lu YJ, Wei KC, Ma CCM, Yang SY, Chen JP (2012) Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Coll Surf B 89:1–9. doi:10.1016/j.colsurfb.2011.08.001 CrossRefGoogle Scholar
  20. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–207. doi:10.1016/S0065-2571(00)00013-3 CrossRefGoogle Scholar
  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  22. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1:399–405. doi:10.1021/mp049928e CrossRefPubMedGoogle Scholar
  23. Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK (2011) Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 32:5417–5426. doi:10.1016/j.biomaterials.2011.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Oberoi HS, Laquer FC, Marky LA, Kabanov AV, Bronich TK (2011) Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum(II). J Control Release 153:64–72. doi:10.1016/j.jconrel.2011.03.028 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Siegel R, Desantis R, Virgo C et al (2012) Cancer treatment and survivorship statistics. CA Cancer J Clin 0:1–22. doi:10.3322/caac.21149 Google Scholar
  26. Stukov AN, Gershanovich ML, Blank MA et al (2011) Antitumor agents. NIKA, St. Petersburg (in Russian)Google Scholar
  27. Sun WT, Zhang N, Li AG, Zou WW, Xu WF (2008) Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int J Pharm 353:243–250. doi:10.1016/j.ijpharm.2007.11.017 CrossRefPubMedGoogle Scholar
  28. Tian Y, Bromberg L, Lin SN, Hatton TA, Tam KC (2007) Complexation and release of doxorubicin from its complexes with Pluronic P85-b-poly(acrylic acid) block copolymers. J Control Release 121:137–145. doi:10.1016/j.jconrel.2007.05.010 CrossRefPubMedGoogle Scholar
  29. Tokunaga Y, Nakashima M, Shibata S, et al (1997) Antitumor effects of 4-pyridoxate diamine hydroxy platinum, a novel cisplatin derivative, against malignant gliomas in vitro and in vivo: a comparison with cisplatin. Pharm Sci 3:353–356.Google Scholar
  30. Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS (2009) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714. doi:10.1039/b821416f CrossRefGoogle Scholar
  31. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adryamicin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50:1700–1703. doi:10.1016/j.ijpharm.2008.08.011 Google Scholar
  32. Yokoyama M, Okano T, Sakurai Y, Suwa D, Kataoka K (1996) Introduction of cisplatin into polymeric micelle. J Control Release 39:351–356. doi:10.1016/0168-3659(95)00165-4 CrossRefGoogle Scholar
  33. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, Okano T (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 50:79–92. doi:10.1016/S0168-3659(97)00115-6 CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2016

Authors and Affiliations

  • Roman Voeikov
    • 1
    • 2
  • Tatiana Abakumova
    • 2
  • Nadezhda Grinenko
    • 2
  • Pavel Melnikov
    • 2
  • Vladimir Bespalov
    • 3
  • Alexander Stukov
    • 3
  • Vladimir Chekhonin
    • 2
    • 4
  • Natalia Klyachko
    • 5
  • Natalia Nukolova
    • 2
    • 4
  1. 1.Faculty of Materials ScienceM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and NarcologyMinistry of Health and Social Development of the Russian FederationMoscowRussia
  3. 3.Group of Cancer ChemopreventionN.N. Petrov Research Institute of of the Ministry of Health of the Russian FederationSt. PetersburgRussia
  4. 4.Department of Medical NanobiotechnologyPirogov Russian State Medical UniversityMoscowRussia
  5. 5.Department of Chemical Enzymology, Faculty of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations