Skip to main content

Advertisement

Log in

Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

In recent decade, antimicrobial resistance is a serious international concern resulted by misuse of antibiotics. Some dangerous pathogenic strains such as Methicillin-resistant Staphylococcus aureus are resistant to the wide range of conventional antibiotics. Antimicrobial peptides (AmPs) are remarkable antibacterial drugs, which can be used instead of conventional antibiotics due to their membrane targeting activity especially against both gram-negative and gram-positive multidrug-resistant strains of pathogenic bacteria. Target delivery of AmPs is necessary because of short half-life and relative toxicity against healthy cells. Polysaccharide-based nanostructured carriers such as nanoparticles and layer-by-layer thin films are widely used due to their biocompatibility, stimuli-responsive properties, and strong affinity to bond with proteins and peptides. In this review, we focus on some prominent polysaccharide-based AmP delivery systems and describe some advantage and disadvantage of each carrier. We also introduce some novel AmP nanocarriers due to the two main strategies of combat against antibacterial resistance. Among these novel carriers, polysaccharide-based nanogels have incredible properties such as high loading capacity, stimuli responsive release behavior, simple large-scale production, and thermodynamically stability, which could be a promising candidate for controlled release of AmPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arora D, Sharma N, Sharma V, Abrol V, Shankar R, Jaglan S (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100:2603–2615

    Article  CAS  PubMed  Google Scholar 

  • Azevedo HS, Pashkuleva I (2015) Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv Drug Deliv Rev 94:63–76

    Article  CAS  PubMed  Google Scholar 

  • Baier G, Cavallaro A, Vasilev K, Mailander V, Musyanovych A, Landfester K (2013) Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 14:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Bi L, Yang L, Bhunia AK, Yao Y (2011a) Carbohydrate nanoparticle-mediated colloidal assembly for prolonged efficacy of bacteriocin against food pathogen. Biotechnol Bioeng 108:1529–1536

    Article  CAS  PubMed  Google Scholar 

  • Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011b) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release 150:150–156

    Article  CAS  PubMed  Google Scholar 

  • Bjorn C, Noppa L, Naslund Salomonsson E, Johansson AL, Nilsson E, Mahlapuu M et al (2015) Efficacy and safety profile of the novel antimicrobial peptide pxl150 in a mouse model of infected burn wounds. Int J Antimicrob Agents 45:519–524

    Article  PubMed  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    Article  CAS  PubMed  Google Scholar 

  • Boddohi S, Kipper MJ (2010) Engineering nanoassemblies of polysaccharides. Adv Mater 22:2998–3016

    Article  CAS  PubMed  Google Scholar 

  • Boddohi S, Killingsworth CE, Kipper MJ (2008) Polyelectrolyte multilayer assembly as a function of ph and ionic strength using the polysaccharides chitosan and heparin. Biomacromolecules 9:2021–2028

    Article  CAS  PubMed  Google Scholar 

  • Boddohi S, Moore N, Johnson PA, Kipper MJ (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Boddohi S, Almodovar J, Zhang H, Johnson PA, Kipper MJ (2010) Layer-by-layer assembly of polysaccharide-based nanostructured surfaces containing polyelectrolyte complex nanoparticles. Colloids Surf B 77:60–68

    Article  CAS  Google Scholar 

  • Bouyer E, Mekhloufi G, Rosilio V, Grossiord JL, Agnely F (2012) Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm 436:359–378

    Article  CAS  PubMed  Google Scholar 

  • Brooks GF, Butel JS, Jawetz E, Morse SA (2001) Jawetz, melnick, & adelberg’s medical microbiology. Lange Medical Books/McGraw-Hill, Medical Pub.Division, New York City

    Google Scholar 

  • Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Meng F, Ma S, Xu H, Liu H, Jing X et al (2011) Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. J Mater Chem 21:19013–19020

    Article  CAS  Google Scholar 

  • Coates ARM (2012) Antibiotic resistance. Springer, Berlin

    Book  Google Scholar 

  • Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MC (2011) Covalent immobilization of antimicrobial peptides (amps) onto biomaterial surfaces. Acta Biomater 7:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    Article  CAS  PubMed  Google Scholar 

  • Dawson MJ, Scott RW (2012) New horizons for host defense peptides and lantibiotics. Curr Opin Pharmacol 12:545–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díez-Pascual A, Shuttleworth P (2014) Layer-by-layer assembly of biopolyelectrolytes onto thermo/ph-responsive micro/nano-gels. Materials 7:7472

    Article  Google Scholar 

  • Durán N, Guterres SS, Alves OL, Zucolotto V (2013) Nanotoxicology: materials, methodologies, and assessments. Springer, New York City

    Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  PubMed  Google Scholar 

  • Gilmore KA, Lampley MW, Boyer C, Harth E (2016) Matrices for combined delivery of proteins and synthetic molecules. Adv Drug Deliv Rev 98:77–85

    Article  CAS  PubMed  Google Scholar 

  • Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    Article  CAS  PubMed  Google Scholar 

  • Goycoolea FM, Valle-Gallego A, Stefani R, Menchicchi B, David L, Rochas C et al (2012) Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid Polym Sci 290:1423–1434

    Article  CAS  Google Scholar 

  • Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293

    Article  CAS  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wiradharma N, Xu K, Ji Z, Bi S, Li L et al (2012) Cationic amphiphilic alpha-helical peptides for the treatment of carbapenem-resistant acinetobacter baumannii infection. Biomaterials 33:8841–8847

    Article  CAS  PubMed  Google Scholar 

  • Huang HN, Pan CY, Chan YL, Chen JY, Wu CJ (2014) Use of the antimicrobial peptide pardaxin (ge33) to protect against methicillin-resistant staphylococcus aureus infection in mice with skin injuries. Antimicrob Agents Chemother 58:1538–1545

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran M, Revol-Junelles A-M, René N, Jamshidian M, Akhtar MJ, Arab-Tehrany E et al (2012) Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll 29:407–419

    Article  CAS  Google Scholar 

  • Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 12:1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Jin KM (2009) Thermo-reversible coacervate combination gels for protein delivery. WO2009028764A1, Mar 5, 2009

  • Kumar A, Zhang X, Liang XJ (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim HW, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:2041731413503357

    Article  PubMed  PubMed Central  Google Scholar 

  • Lequeux I, Ducasse E, Jouenne T, Thebault P (2014) Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur Polym J 51:182–190

    Article  CAS  Google Scholar 

  • Li Y, Maciel D, Rodrigues J, Shi X, Tomas H (2015) Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev 115:8564–8608

    Article  CAS  PubMed  Google Scholar 

  • Lyu Y, Yang Y, Lyu X, Dong N, Shan A (2016) Antimicrobial activity, improved cell selectivity and mode of action of short pmap-36-derived peptides against bacteria and candida. Sci Rep 6:27258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccari G, Di Luca M, Nifosi R (2015) In silico design of antimicrobial peptides. Methods Mol Biol 1268:195–219

    Article  CAS  PubMed  Google Scholar 

  • McPhee JB, Hancock RE (2005) Function and therapeutic potential of host defence peptides. J Pept Sci 11:677–687

    Article  CAS  PubMed  Google Scholar 

  • Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U et al (2016) Chemical synthesis of glycosaminoglycans. Chem Rev 116:8193–8255

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Myrick JM, Vendra VK, Krishnan S (2014) Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnol Rev 3:319–346

    CAS  Google Scholar 

  • Na K, Bum Lee T, Park KH, Shin EK, Lee YB, Choi HK (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin h as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173

    Article  CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Narang AS, Mahato RI (2010) Targeted delivery of small and macromolecular drugs. CRC Press, Boca Raton

    Book  Google Scholar 

  • Park HJ, McConnell JT, Boddohi S, Kipper MJ, Johnson PA (2011) Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids Surf B Biointerfaces 83:198–203

    Article  CAS  PubMed  Google Scholar 

  • Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R et al (2012) Combination delivery of tgf-beta inhibitor and il-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 11:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posocco B, Dreussi E, de Santa J, Toffoli G, Abrami M, Musiani F et al (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8:2569–2615

    Article  Google Scholar 

  • Pramod PS, Takamura K, Chaphekar S, Balasubramanian N, Jayakannan M (2012) Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells. Biomacromolecules 13:3627–3640

    Article  CAS  PubMed  Google Scholar 

  • Pramod PS, Deshpande NU, Jayakannan M (2015) Real-time drug release analysis of enzyme and ph responsive polysaccharide nanovesicles. J Phys Chem B 119:10511–10523

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues S, Grenha A (2015) Activation of macrophages: establishing a role for polysaccharides in drug delivery strategies envisaging antibacterial therapy. Curr Pharm Des 21:4869–4887

    Article  CAS  PubMed  Google Scholar 

  • Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Curr Opin Pharmacol 18:56–60

    Article  CAS  PubMed  Google Scholar 

  • Sakoulas G, Bayer AS, Pogliano J, Tsuji BT, Yang SJ, Mishra NN et al (2012) Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant enterococcus faecium. Antimicrob Agents Chemother 56:838–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandiford SK (2015) Perspectives on lantibiotic discovery—where have we failed and what improvements are required? Expert Opin Drug Discov 10:315–320

    Article  CAS  PubMed  Google Scholar 

  • Sanford JP, Gilbert DN, Moellering RC, Sande MA (1997) The sanford guide to antimicrobial therapy and hiv-aids therapy, 1997. Antimicrobial Therapy Incorporated, Rappahannock County

    Google Scholar 

  • Sasisekharan R, Raman R, Prabhakar V (2006) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 8:181–231

    Article  CAS  PubMed  Google Scholar 

  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  CAS  PubMed  Google Scholar 

  • Shan Y, Dong Y, Jiang D (2015) Recombinant expression of a novel antimicrobial peptide consisting of human α-defensin 5 and mytilus coruscus mytilin-1 in Escherichia coli. J Korean Soc Appl Biol Chem 58:807–812

    Article  CAS  Google Scholar 

  • Shen B, Yang S (2013) Composition and method for preparing alginate nanocapsules. US8449919B2, May 28, 2013

  • Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Caridade SG, Reis RL, Mano JF (2016) Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. Soft Matter 12:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Han SS, Shin EJ (2014) Polysaccharides as nanocarriers for therapeutic applications. J Biomed Nanotechnol 10:2149–2172

    Article  CAS  PubMed  Google Scholar 

  • Sonawane SJ, Kalhapure RS, Rambharose S, Mocktar C, Vepuri SB, Soliman M et al (2016) Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: in vitro and in silico studies. Int J Pharm 504:1–10

    Article  CAS  PubMed  Google Scholar 

  • Traugott KA, Echevarria K, Maxwell P, Green K, Lewis JS 2nd (2011) Monotherapy or combination therapy? The pseudomonas aeruginosa conundrum. Pharmacotherapy 31:598–608

    Article  CAS  PubMed  Google Scholar 

  • Urban P, Valle-Delgado JJ, Moles E, Marques J, Diez C, Fernandez-Busquets X (2012) Nanotools for the delivery of antimicrobial peptides. Curr Drug Targets 13:1158–1172

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang R, Zhang H, Jiang S, Liu H, Sun M et al (2015) Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol). Carbohydr Polym 127:64–71

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2013) Projections of mortality and causes of death, 2015 and 2030. World Health Organization. http://www.who.int/healthinfo/global_burden_disease/projections/en/. Accessed 22 Aug 2016

  • World Health Organization (2014) Antimicrobial resistance global report on surveillance. World Health Organization. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf. Accessed 23 August 2016

  • Wronska N, Felczak A, Zawadzka K, Poszepczynska M, Rozalska S, Bryszewska M et al (2015) Poly(propylene imine) dendrimers and amoxicillin as dual-action antibacterial agents. Molecules 20:19330–19342

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Li MH, Choi SK, Baker JR, Larson RG (2013) DNA condensation by partially acetylated poly (amido amine) dendrimers: effects of dendrimer charge density on complex formation. Molecules 18:10707–10720

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu Y, Wu Z, Chen H (2009) Preparation and characterization of coacervate microcapsules for the delivery of antimicrobial oyster peptides. Drug Dev Ind Pharm 35:369–378

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wu H, Yang J, Tong J, Yi J, Hu Z et al (2015) Antibacterial activity of chitosan grafting nisin: preparation and characterization. React Funct Polym 91–92:71–76

    Article  Google Scholar 

  • Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym 90:1395–1410

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

S. Mohtashamian, S. Boddohi declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Boddohi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtashamian, S., Boddohi, S. Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery. Journal of Pharmaceutical Investigation 47, 85–94 (2017). https://doi.org/10.1007/s40005-016-0289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0289-1

Keywords

Navigation