Journal of Pharmaceutical Investigation

, Volume 45, Issue 1, pp 1–11 | Cite as

Lyotropic liquid crystal systems in drug delivery: a review

  • Dong-Hwan Kim
  • Alexander Jahn
  • Sung-Joon Cho
  • Jung Sun Kim
  • Min-Hyo Ki
  • Dae-Duk KimEmail author


Lamellar, cubic and hexagonal mesophases are some of the most common lyotropic liquid crystal systems, and have attracted much research attention because of their distinctive structures and physicochemical properties. Polar lipids and surfactants exhibit a range of phase behavior in an aqueous environment, depending on the composition of the lipids and surfactants. These characteristics have been investigated for a variety of applications in drug delivery, and lyotropic liquid crystal systems have potential as drug carriers for small molecules, peptides, and proteins. In this article we provide an overview of recent advances in the state of the art, including methods of preparation and applications in drug delivery. The scope and limitations of lyotropic liquid crystals for drug delivery are discussed, and future research perspectives are identified.


Drug delivery Liquid crystals Cubosome Hexosome 



This article does not contain any studies with human and animal subjects performed by any of the authors. All authors (D.-H. Kim, A. Jahn, S.-J. Cho, J. S. Kim, M.-H Ki, and D.-D. Kim) declare that they have no conflict of interest. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2009-0083533) and the MarineBio Research Program (NRF-C1ABA001-2011-0018561).


  1. Aeinleng N, Songkro S, Noipha K, Srichana T (2012) Physicochemical performances of indomethacin in cholesteryl cetyl carbonate liquid crystal as a transdermal dosage. AAPS PharmSciTech 13:513–521CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ahuja M, Dhake AS, Sharma SK, Majumdar DK (2008) Topical ocular delivery of NSAIDs. AAPS J 10:229–241CrossRefPubMedCentralPubMedGoogle Scholar
  3. Amar-Yuli I, Wachtel E, Shoshan EB, Danino D, Aserin A, Garti N (2007) Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir 23:3637–3645CrossRefPubMedGoogle Scholar
  4. Amar-Yuli I, Libster D, Aserin A, Garti N (2009) Solubilization of food bioactives within lyotropic liquid crystalline mesophases. Curr Opin Colloid Interface Sci 14:21–32CrossRefGoogle Scholar
  5. Angelov B, Angelova A, Vainio U, Garamus VM, Lesieur S, Willumeit R, Couvreur P (2009) Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: a small-angle X-ray scattering investigation. Langmuir 25:3734–3742CrossRefPubMedGoogle Scholar
  6. Bitan-Cherbakovsky L, Libster D, Aserin A, Garti N (2011) Complex dendrimer–lyotropic liquid crystalline systems: structural behavior and interactions. J Phys Chem B 115:11984–11992CrossRefPubMedGoogle Scholar
  7. Boyd BJ, Whittaker DV, Khoo SM, Davey G (2006a) Hexosomes formed from glycerate surfactants-formulation as a colloidal carrier for irinotecan. Int J Pharm 318:154–162CrossRefPubMedGoogle Scholar
  8. Boyd BJ, Whittaker DV, Khoo S-M, Davey G (2006b) Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309:218–226CrossRefPubMedGoogle Scholar
  9. Boyd BJ, Khoo SM, Whittaker DV, Davey G, Porter CJ (2007) A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm 340:52–60CrossRefPubMedGoogle Scholar
  10. Boyd BJ, Dong Y-D, Rades T (2009) Nonlamellar liquid crystalline nanostructured particles: advances in materials and structure determination. J Liposome Res 19:12–28CrossRefPubMedGoogle Scholar
  11. Cervin C, Vandoolaeghe P, Nistor C, Tiberg F, Johnsson M (2009) A combined in vitro and in vivo study on the interactions between somatostatin and lipid-based liquid crystalline drug carriers and bilayers. Eur J Pharm Sci 36:377–385CrossRefPubMedGoogle Scholar
  12. Charman WN, Rogge MC, Boddy AW, Berger BM (1993) Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J Clin Pharmacol 33:381–386CrossRefPubMedGoogle Scholar
  13. Chong JY, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ (2012) High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. Langmuir 28:9223–9232CrossRefPubMedGoogle Scholar
  14. Chung H, Kim JS, Um J, Kwon I, Jeong S (2002) Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia 45:448–451CrossRefPubMedGoogle Scholar
  15. Cohen-Avrahami M, Libster D, Aserin A, Garti N (2012) Penetratin-induced transdermal delivery from HII mesophases of sodium diclofenac. J Control Release 159:419–428CrossRefPubMedGoogle Scholar
  16. Dalm V, Hofland L, Lamberts S (2008) Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field. Mol Cell Endocrinol 286:262–277CrossRefPubMedGoogle Scholar
  17. Dima L, Abraham A, Ellen W, Gil S, Garti N (2007) An HII liquid crystal-based delivery system for cyclosporin A: physical characterization. J Colloid Interface Sci 308:514–524CrossRefGoogle Scholar
  18. Dong YD, Larson I, Barnes TJ, Prestidge CA, Boyd BJ (2011) Adsorption of nonlamellar nanostructured liquid-crystalline particles to biorelevant surfaces for improved delivery of bioactive compounds. ACS Appl Mater Interfaces 3:1771–1780CrossRefPubMedGoogle Scholar
  19. Dong YD, Larson I, Barnes TJ, Prestidge CA, Allen S, Chen X, Roberts CJ, Boyd BJ (2012) Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications. Langmuir 28:13485–13495CrossRefPubMedGoogle Scholar
  20. Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456CrossRefGoogle Scholar
  21. Engström S, Engström L (1992) Phase behaviour of the lidocaine-monoolein-water system. Int J Pharm 79:113–122CrossRefGoogle Scholar
  22. Engström S, Lindahl L, Wallin R, Engblom J (1992) A study of polar lipid drug systems undergoing a thermoreversible lamellar-to-cubic phase transition. Int J Pharm 86:137–145CrossRefGoogle Scholar
  23. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22:2163–2173CrossRefPubMedGoogle Scholar
  24. Fong WK, Hanley T, Boyd BJ (2009) Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release 135:218–226CrossRefPubMedGoogle Scholar
  25. Fong WK, Hanley TL, Thierry B, Kirby N, Waddington LJ, Boyd BJ (2012) Controlling the nanostructure of gold nanorod-lyotropic liquid-crystalline hybrid materials using near-infrared laser irradiation. Langmuir 28:14450–14460CrossRefPubMedGoogle Scholar
  26. Fraser SJ, Mulet X, Hawley A, Separovic F, Polyzos A (2013) Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions. J Colloid Interf Sci 408:117–124CrossRefGoogle Scholar
  27. Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, Gan Y (2010) Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm 396:179–187CrossRefPubMedGoogle Scholar
  28. Garg G, Saraf S, Saraf S (2007) Cubosomes: an overview. Biol Pharm Bull 30:350–353CrossRefPubMedGoogle Scholar
  29. Garti N, Hoshen G, Aserin A (2012) Lipolysis and structure controlled drug release from reversed hexagonal mesophase. Colloid Surf B 94:36–43CrossRefGoogle Scholar
  30. Geraghty PB, Attwood D, Collett JH, Dandiker Y (1996) The in vitro release of some antimuscarinic drugs from monoolein/water lyotropic liquid crystalline gels. Pharm Res 13:1265–1271CrossRefPubMedGoogle Scholar
  31. Gong X, Moghaddam MJ, Sagnella SM, Conn CE, Danon SJ, Waddington LJ, Drummond CJ (2011) Lyotropic liquid crystalline self-assembly material behavior and nanoparticulate dispersions of a phytanyl pro-drug analogue of capecitabine-A chemotherapy agent. ACS Appl Mater Interfaces 3:1552–1561CrossRefPubMedGoogle Scholar
  32. Guillot S, Salentinig S, Chemelli A, Sagalowicz L, Leser ME, Glatter O (2010) Influence of the stabilizer concentration on the internal liquid crystalline order and the size of oil-loaded monolinolein-based dispersions. Langmuir 26:6222–6229CrossRefPubMedGoogle Scholar
  33. Guo C, Wang J, Cao F, Lee RJ, Zhai G (2010) Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 15:1032–1040CrossRefPubMedGoogle Scholar
  34. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1997) Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 13:6964–6971CrossRefGoogle Scholar
  35. Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, Gan L (2010) Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin 31:990–998CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hirlekar R, Jain S, Patel M, Garse H, Kadam V (2010) Hexosomes: a novel drug delivery system. Curr Drug Deliv 7:28–35CrossRefPubMedGoogle Scholar
  37. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568CrossRefGoogle Scholar
  38. Jain V, Swarnakar NK, Mishra PR, Verma A, Kaul A, Mishra AK, Jain NK (2012) Paclitaxel loaded PEGylated glyceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials 33:7206–7220CrossRefPubMedGoogle Scholar
  39. Jin X, Zhang ZH, Li SL, Sun E, Tan XB, Song J, Jia XB (2013) A nanostructured liquid crystalline formulation of 20 (S)-protopanaxadiol with improved oral absorption. Fitoterapia 84:64–71CrossRefPubMedGoogle Scholar
  40. Kaasgaard T, Drummond CJ (2006) Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys 8:4957–4975CrossRefPubMedGoogle Scholar
  41. Ki MH, Lim JL, Ko JY, Park SH, Kim JE, Cho HJ, Park ES, Kim DD (2014) A new injectable liquid crystal system for one month delivery of leuprolide. J Control Release 185:62–70CrossRefPubMedGoogle Scholar
  42. Kuntsche J, Horst JC, Bunjes H (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 417:120–137CrossRefPubMedGoogle Scholar
  43. Lai J, Chen J, Lu Y, Sun J, Hu F, Yin Z, Wu W (2009) Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems. I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech 10:960–966CrossRefPubMedCentralPubMedGoogle Scholar
  44. Lapteva M, Kalia YN (2013) Microstructured bicontinuous phase formulations: their characterization and application in dermal and transdermal drug delivery. Expert Opin Drug Deliv 10:1043–1059CrossRefPubMedGoogle Scholar
  45. Larsson K (1999) Colloidal dispersions of ordered lipid-water phases. J Dispers Sci Technol 20:27–34CrossRefGoogle Scholar
  46. Lee KW, Nguyen TH, Hanley T, Boyd BJ (2009) Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm 365:190–199CrossRefPubMedGoogle Scholar
  47. Leesajakul W, Nakano M, Taniguchi A, Handa T (2004) Interaction of cubosomes with plasma components resulting in the destabilization of cubosomes in plasma. Colloid Surf B 34:253–258CrossRefGoogle Scholar
  48. Libster D, Aserin A, Garti N (2011) Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications. J Colloid Interf Sci 356:375–386CrossRefGoogle Scholar
  49. Lopes LB, Ferreira DA, De Paula D, Garcia MTJ, Thomazini JA, Fantini MC, Bentley MVL (2006) Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res 23:1332–1342CrossRefPubMedGoogle Scholar
  50. Lynch ML, Ofori-Boateng A, Hippe A, Kochvar K, Spicer PT (2003) Enhanced loading of water-soluble actives into bicontinuous cubic phase liquid crystals using cationic surfactants. J Colloid Interf Sci 260:404–413CrossRefGoogle Scholar
  51. Malmsten M (2007) Phase transformations in self-assembly systems for drug delivery applications. J Dispers Sci Technol 28:63–72CrossRefGoogle Scholar
  52. Negrini R, Mezzenga R (2011) pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 27:5296–5303CrossRefPubMedGoogle Scholar
  53. Negrini R, Mezzenga R (2012) Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir 28:16455–16462CrossRefPubMedGoogle Scholar
  54. Nemanic MK, Elias PM (1980) In situ precipitation: a novel cytochemical technique for visualization of permeability pathways in mammalian stratum corneum. J Histochem Cytochem 28:573–578CrossRefPubMedGoogle Scholar
  55. Nguyen TH, Hanley T, Porter CJ, Boyd BJ (2011) Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 153:180–186CrossRefPubMedGoogle Scholar
  56. Nielsen LS, Schubert L, Hansen J (1998) Bioadhesive drug delivery systems: I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci 6:231–239CrossRefPubMedGoogle Scholar
  57. Norling T, Lading P, Engstrom S, Larsson K, Krog N, Nissen SS (1992) Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol 19:687–692CrossRefPubMedGoogle Scholar
  58. Nylander T, Mattisson C, Razumas V, Miezis Y, Håkansson B (1996) A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloid Surf A 114:311–320CrossRefGoogle Scholar
  59. Park ES, Maniar M, Shah JC (1998) Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J Control Release 52:179–189CrossRefPubMedGoogle Scholar
  60. Quinn PJ (2012) The effect of tocopherol on the structure and permeability of phosphatidylcholine liposomes. J Control Release 160:158–163CrossRefPubMedGoogle Scholar
  61. Rattanapak T, Birchall J, Young K, Ishii M, Meglinski I, Rades T, Hook S (2013) Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using optical coherence tomography and two-photon microscopy. J Control Release 172:894–903CrossRefPubMedGoogle Scholar
  62. Rizwan S, Dong YD, Boyd B, Rades T, Hook S (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38:478–485CrossRefPubMedGoogle Scholar
  63. Rizwan SB, Boyd BJ, Rades T, Hook S (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144CrossRefPubMedGoogle Scholar
  64. Rizwan S, Mcburney W, Young K, Hanley T, Boyd B, Rades T, Hook S (2013) Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 165:16–21CrossRefPubMedGoogle Scholar
  65. Rossetti FC, Fantini MC, Carollo ARH, Tedesco AC, Lopes Badra Bentley MV (2011) Analysis of liquid crystalline nanoparticles by small angle X-ray diffraction: evaluation of drug and pharmaceutical additives influence on the internal structure. J Pharm Sci 100:2849–2857CrossRefPubMedGoogle Scholar
  66. Sadhale Y, Shah JC (1998) Glyceryl monooleate cubic phase gel as chemical stability enhancer of cefazolin and cefuroxime. Pharm Dev Technol 3:549–556CrossRefPubMedGoogle Scholar
  67. Salentinig S, Yaghmur A, Guillot S, Glatter O (2008) Preparation of highly concentrated nanostructured dispersions of controlled size. J Colloid Interface Sci 326:211–220CrossRefPubMedGoogle Scholar
  68. Spicer P (2005) Cubosome processing: industrial nanoparticle technology development. Chem Eng Res Des 83:1283–1286CrossRefGoogle Scholar
  69. Swarnakar NK, Jain V, Dubey V, Mishra D, Jain N (2007) Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res 24:2223–2230CrossRefPubMedGoogle Scholar
  70. Wörle G, Siekmann B, Koch MH, Bunjes H (2006) Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur J Pharm Sci 27:44–53CrossRefPubMedGoogle Scholar
  71. Wörle G, Drechsler M, Koch M, Siekmann B, Westesen K, Bunjes H (2007) Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm 329:150–157CrossRefPubMedGoogle Scholar
  72. Yamada K, Yamashita J, Todo H, Miyamoto K, Hashimoto S, Tokudome Y, Hashimoto F, Sugibayashi K (2011) Preparation and evaluation of liquid-crystal formulations with skin-permeation-enhancing abilities for entrapped drugs. J Oleo Sci 60:31–40CrossRefPubMedGoogle Scholar
  73. Zhai J, Waddington L, Wooster TJ, Aguilar MI, Boyd BJ (2011) Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Langmuir 27:14757–14766CrossRefPubMedGoogle Scholar
  74. Zhen G, Hinton TM, Muir BW, Shi S, Tizard M, Mclean KM, Hartley PG, Gunatillake P (2012) Glycerol monooleate-based nanocarriers for siRNA delivery in vitro. Mol Pharm 9:2450–2457CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2014

Authors and Affiliations

  • Dong-Hwan Kim
    • 1
  • Alexander Jahn
    • 1
  • Sung-Joon Cho
    • 1
  • Jung Sun Kim
    • 2
  • Min-Hyo Ki
    • 3
  • Dae-Duk Kim
    • 1
    Email author
  1. 1.College of Pharmacy and Research Institute of Pharmaceutical ScienceSeoul National UniversitySeoulRepublic of Korea
  2. 2.Division of Health SciencesDongseo UniversityBusanRepublic of Korea
  3. 3.Chong Kun Dang Research InstituteCKD Pharmaceutics Inc.Yongin-siRepublic of Korea

Personalised recommendations