Journal of Pharmaceutical Investigation

, Volume 45, Issue 1, pp 35–49 | Cite as

Physicochemical and toxicological characterization of sucrose-bound polynuclear iron oxyhydroxide formulations

  • Bhavesh S. BarotEmail author
  • Punit B. Parejiya
  • Pragna K. Shelat
  • Gaurang B. Shah
  • Dharmik M. Mehta
  • Trupti V. Pathak
Regular Article


Intravenous iron formulations comprising of iron/iron–oxyhydroxide–carbohydrate complex are an established therapy for the treatment of iron deficiency anemia. These preparations should be subjected to exhaustive physicochemical and toxicological studies in order to establish their safety and efficacy. Following Venofer® (innovator iron–sucrose formulation), various iron sucrose similar have entered into the market with equivalent physicochemical and toxicological profile. This report describes the physicochemical and toxicological studies of a novel iron sucrose injection (IS-Claris). IS-Claris and Venofer® were subjected to various physicochemical studies such as elemental and chemical analysis; X-ray diffraction; particle size and distribution; labile iron detection, Mössbauer and Raman spectroscopy. The presence of iron oxides in IS-Claris and Venofer® could be confirmed by the major peaks at 24.65° (2θ) and 38.2° (2θ). The iron sucrose samples demonstrated similar reduction peaks of Fe(III) to Fe in their respective polarograms. The average diameter of the core of IS-Claris and Venofer® was estimated to be 2.92 ± 0.01 and 2.77 ± 0.63 nm, respectively. The Mössbauer spectra of IS-Claris and Venofer® showed a doublet with an isomer shift δ = 0.43 ± 0.01 mm/s. Moreover, the other physicochemical specifications of IS-Claris were comparable to Venofer®. The toxicological studies demonstrated that IS-Claris safety profile is equivalent to Venofer®. It could be concluded that IS-Claris could be used as a potential alternative to Venofer® with similar clinical implications.


Iron–sucrose complex Venofer® X-ray diffractometry Raman spectroscopy Labile iron Toxicology 



All authors (B.S. Barot, P.B. Parejiya, P.K. Shelat, G.B. Shah, D.M. Mehta, and T.V. Pathak) declare that they have no conflict of interest. The authors are thankful to Mrs. Mallika Babu and Ms. Sona Chaudhri for providing a helping hand in the preparation of manuscript.


  1. Agarwal R, Rizkala AR, Bastani B, Kaskas MO, Leehey DJ, Besarab A (2006) A randomized controlled trial of oral versus intravenous iron in chronic kidney disease. Am J Nephrol 26(5):445–454. doi: 10.1159/000096174 CrossRefPubMedGoogle Scholar
  2. Auerbach M, Ballard H (2008a) Intravenous iron as standard of care in oncology: opportunity lost. J Am Pharm Assoc 48(4):455–457. doi: 10.1331/JAPhA.2008.08532 CrossRefGoogle Scholar
  3. Auerbach M, Ballard H (2008b) Intravenous iron in oncology. J Natl Compr Canc Netw 6(6):585–592 quiz 592PubMedGoogle Scholar
  4. Balakrishnan VS, Rao M, Kausz AT, Brenner L, Pereira BJ, Frigo TB, Lewis JM (2009) Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Invest 39(6):489–496. doi: 10.1111/j.1365-2362.2009.02130.x CrossRefPubMedGoogle Scholar
  5. Barot BS, Parejiya PB, Mehta DM, Shelat PK, Shah GB (2014) Physicochemical and structural characterization of iron–sucrose formulations: a comparative study. Pharm Dev Technol 19(5):513–520. doi: 10.3109/10837450.2013.795171 CrossRefPubMedGoogle Scholar
  6. Binner JGP, Santacruz MI, Annapoorani K (2009) Method for concentrating nanosuspensions. US Patent US 2009/0294357 A1Google Scholar
  7. Breymann C, Richter C, Huttner C, Huch R, Huch A (2000) Effectiveness of recombinant erythropoietin and iron sucrose vs. iron therapy only, in patients with postpartum anaemia and blunted erythropoiesis. Eur J Clin Invest 30(2):154–161CrossRefPubMedGoogle Scholar
  8. Breymann C, Bian XM, Blanco-Capito LR, Chong C, Mahmud G, Rehman R (2011) Expert recommendations for the diagnosis and treatment of iron-deficiency anemia during pregnancy and the postpartum period in the Asia-Pacific region. J Perinat Med 39(2):113–121. doi: 10.1515/JPM.2010.132 PubMedGoogle Scholar
  9. Cancado RD, Munoz M (2011) Intravenous iron therapy: how far have we come? Rev Bras Hematol Hemoter 33(6):461–469. doi: 10.5581/1516-8484.20110123 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40(2):450–458CrossRefPubMedGoogle Scholar
  11. Danielson BG (2004) Structure, chemistry, and pharmacokinetics of intravenous iron agents. J Am Soc Nephrol 15(Suppl 2):S93–S98. doi: 10.1097/01.ASN.0000143814.49713.C5 PubMedGoogle Scholar
  12. de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectros 28(11):873–878. doi: 10.1002/(sici)1097-4555(199711)28 CrossRefGoogle Scholar
  13. Elford P, Bouchard J, Jaillet L, Pearson N, Rogue A, Sabadie C, Forster R (2013) Biodistribution and predictive hepatic gene expression of intravenous iron sucrose. J Pharmacol Toxicol Methods 68(3):374–383. doi: 10.1016/j.vascn.2013.04.005 CrossRefPubMedGoogle Scholar
  14. Erni I, Oswald N, Rich HW, Schneider W (1984) Chemical characterization of iron (III)-hydroxide-dextrin complexes. A comparative study of commercial preparations with alleged reproductions used in the examination of bioavailability. Arzneimittelforschung 34(11):1555–1559PubMedGoogle Scholar
  15. Esposito BP, Breuer W, Slotki I, Cabantchik ZI (2002) Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin-bound iron in dialysis patients. Eur J Clin Invest 32(Suppl 1):42–49CrossRefPubMedGoogle Scholar
  16. Fishbane S (2003) Safety issues with iron sucrose. Am J Kidney Dis 41(4):899 author reply 900CrossRefPubMedGoogle Scholar
  17. Funk F, Long GJ, Hautot D, Büchi R, Christl I, Weidler PG (2001) Physical and chemical characterization of therapeutic iron containing materials: a study of several superparamagnetic drug formulations with the β-FeOOH or ferrihydrite structure. Hyperfine Interact 136–137(1–2):73–95. doi: 10.1023/a:1015552311359 CrossRefGoogle Scholar
  18. Futterer S, Andrusenko I, Kolb U, Hofmeister W, Langguth P (2013) Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD). J Pharm Biomed Anal 86:151–160. doi: 10.1016/j.jpba.2013.08.005 CrossRefPubMedGoogle Scholar
  19. Garcia-Erce JA, Cuenca J, Martinez F, Cardona R, Perez-Serrano L, Munoz M (2006) Perioperative intravenous iron preserves iron stores and may hasten the recovery from post-operative anaemia after knee replacement surgery. Transfus Med 16(5):335–341. doi: 10.1111/j.1365-3148.2006.00682.x CrossRefPubMedGoogle Scholar
  20. Geisser P, Baer M, Schaub E (1992) Structure/histotoxicity relationship of parenteral iron preparations. Arzneimittelforschung 42(12):1439–1452PubMedGoogle Scholar
  21. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. Can Med Assoc J 172(3):367–379. doi: 10.1503/cmaj.1040752 CrossRefGoogle Scholar
  22. Gibbs CR (1976) Characterization and application of FerroZine iron reagent as a ferrous iron indicator. Anal Chem 48(8):1197–1201. doi: 10.1021/ac50002a034 CrossRefGoogle Scholar
  23. Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177:941–948. doi: 10.1111/j.1365-246X.2009.04122.x CrossRefGoogle Scholar
  24. Horl WH (2007) Clinical aspects of iron use in the anemia of kidney disease. J Am Soc Nephrol 18(2):382–393. doi: 10.1681/ASN.2006080856 CrossRefPubMedGoogle Scholar
  25. Huwe H, Fröba M (2003) Iron (III) oxide nanoparticles within the pore system of mesoporous carbon CMK-1: intra-pore synthesis and characterization. Microporous Mesoporous Mater. 60(1–3):151–158. doi: 10.1016/S1387-1811(03)00336-6 CrossRefGoogle Scholar
  26. Jahn MR, Andreasen HB, Futterer S, Nawroth T, Schunemann V, Kolb U, Hofmeister W, Munoz M, Bock K, Meldal M, Langguth P (2011) A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm 78(3):480–491. doi: 10.1016/j.ejpb.2011.03.016 CrossRefPubMedGoogle Scholar
  27. Johnson CA, Mason NA, Bailie GR (1999) Intravenous iron products. ANNA J 26(5):522–524PubMedGoogle Scholar
  28. Kudasheva DS, Lai J, Ulman A, Cowman MK (2004) Structure of carbohydrate-bound polynuclear iron oxyhydroxide nanoparticles in parenteral formulations. J Inorg Biochem 98(11):1757–1769. doi: 10.1016/j.jinorgbio.2004.06.010 CrossRefPubMedGoogle Scholar
  29. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113CrossRefGoogle Scholar
  30. Lim PS, Wei YH, Yu YL, Kho B (1999) Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy. Nephrol Dial Transplant 14(11):2680–2687CrossRefPubMedGoogle Scholar
  31. Madore F, White CT, Foley RN, Barrett BJ, Moist LM, Klarenbach SW, Culleton BF, Tonelli M, Manns BJ (2008) Clinical practice guidelines for assessment and management of iron deficiency. Kidney Int Suppl 110:S7–S11. doi: 10.1038/ki.2008.269 CrossRefPubMedGoogle Scholar
  32. Maher P, Lewerenz J, Lozano C, Torres JL (2008) A novel approach to enhancing cellular glutathione levels. J Neurochem 107(3):690–700. doi: 10.1111/j.1471-4159.2008.05620.x CrossRefPubMedCentralPubMedGoogle Scholar
  33. Meier T, Schropp P, Pater C, Leoni AL, Khov-Tran VV, Elford P (2011) Physicochemical and toxicological characterization of a new generic iron sucrose preparation. Arzneimittelforschung 61(2):112–119. doi: 10.1055/s-0031-1296176 CrossRefPubMedGoogle Scholar
  34. Mimic-Oka J, Savic-Radojevic A, Pljesa-Ercegovac M, Opacic M, Simic T, Dimkovic N, Simic DV (2005) Evaluation of oxidative stress after repeated intravenous iron supplementation. Ren Fail 27(3):345–351PubMedGoogle Scholar
  35. Munoz M, Breymann C, Garcia-Erce JA, Gomez-Ramirez S, Comin J, Bisbe E (2008) Efficacy and safety of intravenous iron therapy as an alternative/adjunct to allogeneic blood transfusion. Vox Sang 94(3):172–183. doi: 10.1111/j.1423-0410.2007.01014.x CrossRefPubMedGoogle Scholar
  36. Munoz M, Gomez-Ramirez S, Garcia-Erce JA (2009) Intravenous iron in inflammatory bowel disease. World J Gastroenterol 15(37):4666–4674CrossRefPubMedCentralPubMedGoogle Scholar
  37. NICE-guidelines (2008) Chronic kidney disease—national clinical guidelines for early identification and management in adults in primary and secondary care. National Institute of Health and Clinical Excellence, LondonGoogle Scholar
  38. Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16(3):534–554CrossRefPubMedGoogle Scholar
  39. Rennie IDB, Keen H, Cowhig J, Harvey M, Field M, Quartey E (1967) Evaluation of clinical methods for detecting proteinuria. Lancet 290(7514):489–492. doi: 10.1016/S0140-6736(67)91656-X CrossRefGoogle Scholar
  40. Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winklhofer-Roob BM (2000) Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol 11(3):539–549PubMedGoogle Scholar
  41. Sengolge G, Horl WH, Sunder-Plassmann G (2005) Intravenous iron therapy: well-tolerated, yet not harmless. Eur J Clin Invest 35(Suppl 3):46–51. doi: 10.1111/j.1365-2362.2005.01530.x CrossRefPubMedGoogle Scholar
  42. Slavov L, Abrashev MV, Merodiiska T, Gelev CH, Vandenberghe RE, Markova-Deneva I, Nedkov I (2010) Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J Magn Magn Mater 322(14):1904–1911. doi: 10.1016/j.jmmm.2010.01.005 CrossRefGoogle Scholar
  43. Toblli JE, Cao G, Oliveri L, Angerosa M (2009a) Differences between original intravenous iron sucrose and iron sucrose similar preparations. Arzneimittelforschung 59(4):176–190. doi: 10.1055/s-0031-1296383 PubMedGoogle Scholar
  44. Toblli JE, Cao G, Oliveri L, Angerosa M (2009b) Differences between the original iron sucrose complex Venofer® and the iron sucrose similar Generis®, and potential implications. Port J Nephrol Hypertens 23(1):53–63Google Scholar
  45. USFDA (2000) Pharmacology review of NDA for Venofer®. Center for Drug Evaluation and Research Application No 21-135Google Scholar
  46. USP (2006) Iron sucrose injection monograph, 29 ed. United States Pharmacopeia 29-National Formulary 24, USP Convention, RockvilleGoogle Scholar
  47. Van Wyck D, Anderson J, Johnson K (2004) Labile iron in parenteral iron formulations: a quantitative and comparative study. Nephrol Dial Transplant 19(3):561–565CrossRefPubMedGoogle Scholar
  48. Zager RA (2006) Parenteral iron compounds: potent oxidants but mainstays of anemia management in chronic renal disease. Clin J Am Soc Nephrol 1(Suppl 1):S24–S31. doi: 10.2215/CJN.01410406 CrossRefPubMedGoogle Scholar
  49. Zager RA, Johnson AC, Hanson SY, Lund S (2005) Parenteral iron compounds sensitize mice to injury-initiated TNF-alpha mRNA production and TNF-alpha release. Am J Physiol Renal Physiol 288(2):F290–F297. doi: 10.1152/ajprenal.00342.2004 CrossRefPubMedGoogle Scholar
  50. Zboril R, Mashlan M, Petridis D (2002) Iron(III) oxides from thermal processes synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chem Mater 14:969–982CrossRefGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2014

Authors and Affiliations

  • Bhavesh S. Barot
    • 1
    Email author
  • Punit B. Parejiya
    • 1
  • Pragna K. Shelat
    • 1
  • Gaurang B. Shah
    • 1
  • Dharmik M. Mehta
    • 1
  • Trupti V. Pathak
    • 2
  1. 1.Department of PharmaceuticsK.B. Institute of Pharmaceutical Education and ResearchGandhinagarIndia
  2. 2.Claris Lifesciences Ltd.AhmedabadIndia

Personalised recommendations