Journal of Pharmaceutical Investigation

, Volume 43, Issue 6, pp 431–451 | Cite as

Coenzyme Q10 oral bioavailability: effect of formulation type

  • Abdulwahab Barakat
  • Ranjita Shegokar
  • Michael DittgenEmail author
  • Rainer H. MüllerEmail author


Coenzyme Q10 (Q10) has a poor bioavailability due to its very low aqueous solubility and high molecular weight. The purpose of this review is to discuss the different types of Q10 drug delivery systems (DDS) ranging from the simple oily dispersions to the nanotechnology-oriented systems such as nanocrystals, self-nanoemulsified drug delivery systems, etc. to overcome the solubility issue. The basics of these approaches were discussed in relationship to the effect of Q10 absorption. For that purpose, the percentage of the drug absorbed to the blood stream out of the administered dose was calculated as the fraction absorbed (Fa%). The Fa% for the nanoemulsions discussed in this article did not correlate with droplet size. In human studies most of the delivery systems had a low Fa% being in the range from 1.53 to 12.48 %. The highest Fa% value was found to be for the self-emulsified drug delivery systems (SEDDS). In dogs studies, the Fa% values ranged between 0.28 (cyclodextrin complex) and 4.8 %. In rat studies, some other DDS like emulsions and solubilized formulations showed Fa% of around 0.22 %. The relationship between the average Fa% in rats, dogs and humans was found to be 1:15:20. One recent study applied both oral and intravenous delivery of Q10; the orally tested SEDDS formulation had an absolute bioavailability of 2.2 % corresponding to Fa% = 0.04 %. The studies with Q10 formulations based only on in vitro data were also discussed and assessed regarding the influence of formulation on solubility, release and/or uptake.


Coenzyme Q10 Oral bioavailability Fraction absorbed (Fa%) Self-emulsified drug delivery system (SEDDS) Nanoemulsions Nanocrystals Cyclodextrins Solid dispersions 


Conflict of interest

Authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.


  1. Abdin AA, Hamouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 55(8):1340–1346PubMedGoogle Scholar
  2. Åberg F, Appelkvist EL, Dallner G, Ernster L (1992) Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys 295(2):230–234PubMedGoogle Scholar
  3. Al-Hasso S (2000) Coenzyme Q10: a review. Hosp Pharm 36(1):51–55Google Scholar
  4. Ankola DD, Viswanad B, Bhardwaj V, Ramarao P, Kumar MNVR (2007) Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur J Pharm Biopharm 67(2):361–369PubMedGoogle Scholar
  5. Badmaev V, Majeed M, Prakash L (2000) Piperine derived from black pepper increases the plasma levels of coenzyme q10 following oral supplementation. J Nutr Biochem 11(2):109–113. doi: 10.1016/s0955-2863(99)00074-1 PubMedGoogle Scholar
  6. Balakrishnan P, Lee B-J, Oh DH, Kim JO, Lee Y-I, Kim D-D, Jee J-P, Lee Y-B, Woo JS, Yong CS, Choi H-G (2009) Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm 374(1–2):66–72PubMedGoogle Scholar
  7. Beg S, Javed S, Kohli K (2010) Bioavailability enhancement of coenzyme Q10: an extensive review of patents. Recent Pat Drug Deliv Formul 4(3):245–255PubMedGoogle Scholar
  8. Belardinelli R, Muçaj A, Lacalaprice F, Solenghi M, Seddaiu G, Principi F, Tiano L, Littarru G (2006) Coenzyme Q10 and exercise training in chronic heart failure. Eur Heart J 27(22):2675PubMedGoogle Scholar
  9. Bhagavan HN, Chopra RK (2006) Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 40(5):445–453PubMedGoogle Scholar
  10. Bhagavan HN, Chopra RK (2007) Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7(Supplement 1):S78–S88. doi: 10.1016/j.mito.2007.03.003 PubMedGoogle Scholar
  11. Bhagavan HN, Chopra RK, Craft NE, Chitchumroonchokchai C, Failla ML (2007) Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model. Int J Pharm 333(1–2):112–117PubMedGoogle Scholar
  12. Bhandari KH, Newa M, Kim JA, Yoo BK, Woo JS, Lyoo WS, Lim HT, Choi HG, Yong CS (2007) Preparation, characterization and evaluation of coenzyme Q10 binary solid dispersions for enhanced solubility and dissolution. Biol Pharm Bull 30(6):1171–1176PubMedGoogle Scholar
  13. Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302(2):645–650. doi: 10.1124/jpet.102.034728 PubMedGoogle Scholar
  14. Bijsterbosch MK, Duursma AM, Bouma JMW, Gruber M (1981) The plasma volume of the Wistar rat in relation to the body weight. Cell Mol Life Sci 37(4):381–382. doi: 10.1007/bf01959874 Google Scholar
  15. Bliznakov EG (2002) Lipid-lowering drugs (statins), cholesterol, and coenzyme Q10. The Baycol case: a modern Pandora’s box. Biomed Pharmacother 56:56–59PubMedGoogle Scholar
  16. Bogentoft C, Edlund P, Olsson B, Wilund L, Westensen K (1991) Biopharmaceutical aspects of intravenous and oral administration of coenzyme Q10. In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q10. Elsevier Science, Amsterdam, pp 215–224Google Scholar
  17. Boreková M, Hojerová J, Koprda V, Bauerová K (2008) Nourishing and health benefits of coenzyme Q10: a review. Czech J Food Sci 26(4):229–241Google Scholar
  18. Carli F, Chiellini E (2003) Pharmaceutical composition comprising an oil/water/oil double microemulsion incorporated into a solid supportGoogle Scholar
  19. Carli F, Chiellini EE, Bellich B, Macchiavelli S, Cadelli G (2005) Ubidecarenone nanoemulsified composite systems. Int J Pharm 291(1–2):113–118PubMedGoogle Scholar
  20. Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302. doi: 10.1002/jps.2600600902 PubMedGoogle Scholar
  21. Chopra R, Goldman R, Sinatra S, Bhagavan H (1998) Relative bioavailability of coenzyme Q10 formulations in human subjects. Int J Vitam Nutr Res 68(2):109–113PubMedGoogle Scholar
  22. Constantinescu R, McDermott MP, DiCenzo R, de Blieck EA, Hyson HC, Beal MF, Bednarczyk EM, Bogdanov M, Metakis LJ, Browne SE, Lorenzo BJ, Ravina B, Kieburtz K (2007) A randomized study of the bioavailability of different formulations of coenzyme Q10 (Ubiquinone). J Clin Pharmacol 47(12):1580–1586. doi: 10.1177/0091270007307571 PubMedGoogle Scholar
  23. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598PubMedGoogle Scholar
  24. Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25(1):220–221PubMedGoogle Scholar
  25. Deichmann R, Lavie C, Andrews S (2010) Coenzyme Q10 and statin-induced mitochondrial dysfunction. Ochsner J 10(1):16–21PubMedGoogle Scholar
  26. Evans M, Baisley J, Barss S, Guthrie N (2009) A randomized, double-blind trial on the bioavailability of two CoQ10 formulations. J Funct Foods 1(1):65–73. doi: 10.1016/j.jff.2008.09.010 Google Scholar
  27. Folkers K, Moesgaard S, Morita M (1994) A one year bioavailability study of coenzyme Q10 with 3 months withdrawal period. Mol Aspects Med 15(Supplement 1):s281–s285. doi: 10.1016/0098-2997(94)90039-6 PubMedGoogle Scholar
  28. Franke AA, Morrison CM, Bakke JL, Custer LJ, Li X, Cooney RV (2010) Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage. Free Radic Biol Med 48(12):1610–1617. doi: 10.1016/j.freeradbiomed.2010.03.002 PubMedGoogle Scholar
  29. Frei B, Kim MC, Ames BN (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 87(12):4879PubMedGoogle Scholar
  30. Fu X, Ji R, Dam J (2009) Acute, subacute toxicity and genotoxic effect of Bio-Quinone® Q10 in mice and rats. Regul Toxicol Pharmacol 53(1):1–5. doi: 10.1016/j.yrtph.2008.09.003 PubMedGoogle Scholar
  31. Gao X, Nishimura K, Hirayama F, Arima H, Uekama K, Schmid G, Terao K, Nakata D, Fukumi H (2006) Enhanced dissolution and oral bioavailability of coenzyme Q10 in dogs obtained by inclusion complexation with -cyclodextrin. Asian J Pharm Sci 1(2):95–102Google Scholar
  32. Geromel V, Darin N, Chrétien D, Bénit P, DeLonlay P, Rötig A, Munnich A, Rustin P (2002) Coenzyme Q10 and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab 77(1–2):21–30. doi: 10.1016/s1096-7192(02)00145-2 PubMedGoogle Scholar
  33. Goldman R (2000) Method for enhancing dissolution properties of relatively insoluble dietary supplements and product incorporating same. United States PatentGoogle Scholar
  34. Greenberg S, Frishman W (1988) Coenzyme Q10: a new drug for myocardial ischemia? Med Clin North Am 72(1):243PubMedGoogle Scholar
  35. Greenberg S, Frishman WH (1990) Co-enzyme Q10: a new drug for cardiovascular disease. J Clin Pharmacol 30(7):569–608Google Scholar
  36. Groneberg DA, Kindermann B, Althammer M, Klapper M, Vormann J, Littarru GP, Döring F (2005) Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 37(6):1208–1218. doi: 10.1016/j.biocel.2004.11.017 PubMedGoogle Scholar
  37. Haas RH (2007) The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion 7(Supplement 1):S136–S145. doi: 10.1016/j.mito.2007.03.008 PubMedGoogle Scholar
  38. Harata K (1998) Structural aspects of stereodifferentiation in the solid state. Chem Rev 98(5):1803–1828. doi: 10.1021/cr9700134 PubMedGoogle Scholar
  39. Hargreaves IP (2003) Ubiquinone: cholesterol’s reclusive cousin. Ann Clin Biochem 40(3):207–218. doi: 10.1258/000456303321610493 PubMedGoogle Scholar
  40. Hargreaves IP, Duncan AJ, Heales SJR, Land JM (2005) The Effect of HMG-CoA reductase inhibitors on coenzyme Q10: possible biochemical/clinical implications. Drug Saf 28:659–676PubMedGoogle Scholar
  41. Hatanaka J, Kimura Y, Lai-Fu Z, Onoue S, Yamada S (2008) Physicochemical and pharmacokinetic characterization of water-soluble Coenzyme Q(10) formulations. Int J Pharm 363(1–2):112–117PubMedGoogle Scholar
  42. Henriksen JE, Andersen CB, Hother-Nielsen O, Vaag A, Mortensen SA, Beck-Nielsen H (1999) Impact of ubiquinone (coenzyme Q10) treatment on glycaemic control, insulin requirement and well-being in patients with Type 1 diabetes mellitus. Diabet Med 16(4):312–318. doi: 10.1046/j.1464-5491.1999.00064.x PubMedGoogle Scholar
  43. Hidaka T, Fujii K, Funahashi I, Fukutomi N, Hosoe K (2008) Safety assessment of coenzyme Q10 (CoQ10). BioFactors 32(1–4):199–208. doi: 10.1002/biof.5520320124 PubMedGoogle Scholar
  44. Hodges S, Hertz N, Lockwood K, Lister R (1999) CoQ10: could it have a role in cancer management? BioFactors 9(2):365–370PubMedGoogle Scholar
  45. Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M (2007) Study on safety and bioavailability of ubiquinol (Kaneka QH(TM)) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol 47(1):19–28. doi: 10.1016/j.yrtph.2006.07.001 PubMedGoogle Scholar
  46. Hsu C-H, Cui Z, Mumper R, Jay M (2003) Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors. AAPS PharmSciTech 4(3):24–35. doi: 10.1208/pt040332 Google Scholar
  47. Hyson H, Kieburtz K, Shoulson I, McDermott M, Ravina B, de Blieck E, Cudkowicz M, Ferrante R, Como P, Frank S (2010) Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov Disord 25(12):1924–1928. doi: 10.1002/mds.22408 PubMedGoogle Scholar
  48. Ikematsu H, Nakamura K, Harashima S-i, Fujii K, Fukutomi N (2006) Safety assessment of coenzyme Q10 (Kaneka Q10) in healthy subjects: a double-blind, randomized, placebo-controlled trial. Regul Toxicol Pharmacol 44(3):212–218PubMedGoogle Scholar
  49. Itagaki S, Ochiai A, Kobayashi M, Sugawara M, Hirano T, Iseki K (2008) Interaction of coenzyme Q10 with the intestinal drug transporter P-Glycoprotein. J Agric Food Chem 56(16):6923–6927. doi: 10.1021/jf800992p PubMedGoogle Scholar
  50. Itagaki S, Ochiai A, Kobayashi M, Sugawara M, Hirano T, Iseki K (2010) Grapefruit juice enhance the uptake of coenzyme Q10 in the human intestinal cell-line Caco-2. Food Chem 120(2):552–555. doi: 10.1016/j.foodchem.2009.10.052 Google Scholar
  51. Jeya M, Moon H-J, Lee J-L, Kim I-W, Lee J-K (2010) Current state of coenzyme Q(10) production and its applications. Appl Microbiol Biotechnol 85(6):1653–1663PubMedGoogle Scholar
  52. Jino J (2010) NanoSolve: New Age Technology to defy aging. Knol. Accessed 10 Mar 2011
  53. Joshi SS, Sawant SV, Shedge A, Halpner AD (2003) Comparative bioavailability of 2 novel coenzyme Q10 preparations in humans. Int J Clin Pharmacol Ther 41(1):42–48PubMedGoogle Scholar
  54. Kaikkonen J, Nyyssönen K, Porkkala-Sarataho E, Poulsen HE, Metsä-Ketelä T, Hayn M, Salonen R, Salonen JT (1997) Effect of oral coenzyme Q10 supplementation on the oxidation resistance of human VLDL + LDL fraction: absorption and antioxidative properties of oil and granule-based preparations. Free Radic Biol Med 22(7):1195–1202. doi: 10.1016/s0891-5849(96)00549-7 PubMedGoogle Scholar
  55. Kaikkonen J, Nyyssönen K, Tomasi A, Iannone A, Tuomainen T, Porkkala-Sarataho E, Salonen J (2000) Antioxidative efficacy of parallel and combined supplementation with coenzyme Q10 and d-alpha-tocopherol in mildly hypercholesterolemic subjects: a randomized placebo-controlled clinical study. Free Radic Res 33(3):329PubMedGoogle Scholar
  56. Kaikkonen J, Tuomainen T-P, Nyyssonen K, Salonen JT (2002) Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res 36(4):389–397PubMedGoogle Scholar
  57. Kalenikova E, Gorodetskaya E, Medvedev O (2009) Bioavailability of coenzyme Q10 in various pharmaceutical formulations. Pharm Chem J 43(8):468–471. doi: 10.1007/s11094-009-0330-z Google Scholar
  58. Katayama K, Fujita T (1972) Studies on the lymphatic absorption of 10, 20-(3H)-coenzyme Q10 in rats. Chem Pharm Bull (Tokyo) 250:2585–2592Google Scholar
  59. Khan M, Gross J, Haupt H, Jainz A, Niklowitz P, Scherer H, Schmidt F, Klapp B, Reisshauer A, Mazurek B (2007) A pilot clinical trial of the effects of coenzyme Q10 on chronic tinnitus aurium. Otolaryngol Head Neck Surg 136(1):72PubMedGoogle Scholar
  60. Khatta M, Alexander BS, Krichten CM, Fisher ML, Freudenberger R, Robinson SW, Gottlieb SS (2000) The effect of coenzyme Q10 in patients with congestive heart failure. Ann Intern Med 132(8):636–640PubMedGoogle Scholar
  61. Kommuru TR, Gurley B, Khan Ma, Reddy IK (2001) Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212(2):233–246PubMedGoogle Scholar
  62. Kumar A, Kaur H, Devi P, Mohan V (2009) Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol Ther 124(3):259–268. doi: 10.1016/j.pharmthera.2009.07.003 PubMedGoogle Scholar
  63. Lacy JE, Embleton JK, Perry EA (2000) Delivery systems for hydrophobic drugs. United States PatentGoogle Scholar
  64. Langsjoen PH (1994) Introduction to coenzyme Q10. Accessed 08 Feb 2011
  65. Langsjoen PH, Langsjoen AM (2003) The clinical use of HMG CoA-reductase inhibitors and the associated depletion of coenzyme Q10. A review of animal and human publications. BioFactors 18(1–4):101–111PubMedGoogle Scholar
  66. Levy HB, Kohlhaas HK (2006) Considerations for supplementing with coenzyme Q10 during statin therapy. Ann Pharmacother 40(2):290–294. doi: 10.1345/aph.1G409 PubMedGoogle Scholar
  67. Littarru GP, Tiano L (2005) Clinical aspects of coenzyme Q10: an update. Curr Opin Clin Nutr Metab Care 8(6):641–646. doi: 10.1016/j.nut.2009.08.008 PubMedGoogle Scholar
  68. Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Nutrition 26(3):250–254. doi: 10.1016/j.nut.2009.08.008 PubMedGoogle Scholar
  69. Liu Z-X, Artmann C (2009) Relative bioavailability comparison of different coenzyme Q10 formulations with a novel delivery system. Altern Ther Health Med 15(2):42–46PubMedGoogle Scholar
  70. Lönnrot K, Metsä-Ketelä T, Molnár G, Ahonen J, Latvala M, Peltola J, Pietilä T, Alho H (1996) The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity. Free Radic Biol Med 21(2):211–217PubMedGoogle Scholar
  71. Lönnrot K, Tolvanen J-P, Pörsti I, Ahola T, Hervonen A, Alho H (1998) Coenzyme Q10 supplementation and recovery from ischemia in senescent rat myocardium. Life Sci 64(5):315–323. doi: 10.1016/s0024-3205(98)00567-0 Google Scholar
  72. López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P (2010) Is coenzyme Q a key factor in aging? Mech Ageing Dev 131(4):225–235. doi: 10.1016/j.mad.2010.02.003 PubMedGoogle Scholar
  73. Lyon W, Van den Brink O, Pepe S, Wowk M, Marasco S, Rosenfeldt F (2001) Similar therapeutic serum levels attained with emulsified and oil based preparations of coenzyme Q10. Asia Pac J Clin Nutr 10(3):212–215PubMedGoogle Scholar
  74. Mancuso M, Orsucci D, Calsolaro V, Choub A, Siciliano G (2009) Coenzyme Q10 and neurological diseases. Pharmaceuticals 2(3):134–149Google Scholar
  75. Marcoff L, Thompson PD (2007) The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol 49(23):2231–2237. doi: 10.1016/j.jacc.2007.02.049 PubMedGoogle Scholar
  76. Mauludin R (2008) Nanosuspensions of poorly soluble drugs for oral administration. Ph.D. thesis, Freie Universität Berlin, BerlinGoogle Scholar
  77. Miles MV (2007) The uptake and distribution of coenzyme Q(10). Mitochondrion 7(Supplement 1):S72–S77. doi: 10.1016/j.mito.2007.02.012 PubMedGoogle Scholar
  78. Miles MV, Horn P, Miles L, Tang P, Steele P, DeGrauw T (2002) Bioequivalence of coenzyme Q10 from over-the-counter supplements. Nutr Res 22(8):919–929. doi: 10.1016/s0271-5317(02)00402-5 Google Scholar
  79. Miles MV, Patterson BJ, Schapiro MB, Hickey FJ, Chalfonte-Evans M, Horn PS, Hotze SL (2006) Coenzyme Q10 absorption and tolerance in children with Down syndrome: a dose-ranging trial. Pediatr Neurol 35(1):30–37. doi: 10.1016/j.pediatrneurol.2005.11.004 PubMedGoogle Scholar
  80. Miles MV, Patterson BJ, Chalfonte-Evans ML, Horn PS, Hickey FJ, Schapiro MB, Steele PE, Tang PH, Hotze SL (2007) Coenzyme Q10 (Ubiquinol-10) supplementation improves oxidative imbalance in children with trisomy 21. Pediatr Neurol 37(6):398–403. doi: 10.1016/j.pediatrneurol.2007.08.003 PubMedGoogle Scholar
  81. Mitchell P (1990) The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron-driven proton translocation. In: Lenaz G, Barnabei O, Rabbi A, Battino M (eds) Highlights in ubiquinone research. Taylor and Francis, London, pp 77–82Google Scholar
  82. Mohr D, Bowry VW, Stocker R (1992) Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta 1126(3):247–254PubMedGoogle Scholar
  83. Moldenhauer J, Cully J (2005) Method for producing a coenzyme Q10/γ-cyclodextrin complex. United States PatentGoogle Scholar
  84. Molyneux S, Florkowski C, Lever M, George P (2004) The bioavailability of coenzyme Q 10 supplements available in New Zealand differs markedly. N Z Med J 117(1203)Google Scholar
  85. Mortensen SA (1993) Perspectives on therapy of cardiovascular diseases with coenzyme Q10 (Ubiquinone). J Mol Med 71(8 Suppl):S116–S123. doi: 10.1007/bf00226851 Google Scholar
  86. Mortensen SA (2003) Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure. Rationale, design and end-points of “Q-symbio”: A multinational trial. BioFactors 18(1):79–89PubMedGoogle Scholar
  87. Mortensen S, Vadhanavikit S, Muratsu K, Folkers K (1990) Coenzyme Q10: clinical benefits with biochemical correlates suggesting a scientific breakthrough in the management of chronic heart failure. Int J Tissue React 12(3):155PubMedGoogle Scholar
  88. Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prep 11(4):833–844Google Scholar
  89. Müller RH, Keck CM (2012) 20 years drug nanocrystals: where are we, and where to go? Eur J Pharm Biopharm 80(1):1–3. doi: 10.1016/j.ejpb.2011.09.012 PubMedGoogle Scholar
  90. Müller R, Mäder K, Lippacher A, Jenning V (1999) Fest-flüssig (halbfeste) Lipidpartikel (Nano-Compartiment-Carrier-NCC) und Verfahren zur Herstellung hochkonzentrierter Lipidpartikel/Lipid particles based on matrix comprising solid and liquid lipid, useful in diagnostics and for controlled release of active agents, especially pharmaceuticals. Germany Patent DE19945203A1Google Scholar
  91. Nawarskas JJ (2005) HMG-CoA reductase inhibitors and coenzyme Q10. Cardiol Rev 13(2):76–79PubMedGoogle Scholar
  92. Nazzal S, Guven N, Reddy IK, Khan MA (2002a) Preparation and characterization of coenzyme Q10–Eudragit® Solid dispersion. Drug Dev Ind Pharm 28(1):49–57. doi: 10.1081/DDC-120001485 PubMedGoogle Scholar
  93. Nazzal S, Nutan M, Palamakula a, Shah R, Zaghloul aa, Khan Ma (2002b) Optimization of a self-nanoemulsified tablet dosage form of Ubiquinone using response surface methodology: effect of formulation ingredients. Int J Pharm 240(1–2):103–114PubMedGoogle Scholar
  94. Nazzal S, Smalyukh II, Lavrentovich OD, Khan Ma (2002c) Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm 235(1–2):247–265PubMedGoogle Scholar
  95. Nazzal S, Zaghloul A-A, Khan MA (2002d) Effect of extragranular microcrystalline cellulose on compaction, surface roughness, and in vitro dissolution of a self-nanoemulsified solid dosage form of ubiquinone. Pharm tech 26(4):86–98Google Scholar
  96. Nepal PR, Han H-K, Choi H-K (2010a) Enhancement of solubility and dissolution of Coenzyme Q10 using solid dispersion formulation. Int J Pharm 383(1–2):147–153. doi: 10.1016/j.ijpharm.2009.09.031 PubMedGoogle Scholar
  97. Nepal PR, Han H-K, Choi H-K (2010b) Preparation and in vitro-in vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur J Pharm Sci 39(4):224–232. doi: 10.1016/j.ejps.2009.12.004 PubMedGoogle Scholar
  98. Niklowitz P, Menke T, Andler W, Okun JG (2004) Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta 342(1–2):219–226. doi: 10.1016/j.cccn.2003.12.020 PubMedGoogle Scholar
  99. Nims RM, Vacca JB, Blair DT, Waring PP (1973) Correlation of plasma volume and body weight in dogs. Army Medical Research and Nutrition Lab Denver Colo. Accessed 11 April 2011
  100. Nishimura A, Yanagawa H, Fujikawa N, Kiriyama A, Shibata N (2009) Pharmacokinetic profiles of coenzyme Q10: absorption of three different oral formulations in rats. J Health Sci 55(4):540–548Google Scholar
  101. Ochiai A, Itagaki S, Kurokawa T, Kobayashi M, Hirano T, Iseki K (2007) Improvement in intestinal coenzyme Q10 absorption by food intake. Yakugaku Zasshi 127(8):1251–1254. doi: 10.1248/yakushi.127.1251 PubMedGoogle Scholar
  102. Okamoto T, Matsuya T, Fukunaga Y, Kishi T, Yamagami T (1989) Human serum ubiquinol-10 levels and relationship to serum lipids. Int J Vitam Nutr Res 59(3):288PubMedGoogle Scholar
  103. Okello E, Jiang X, Mohamed S, Zhao Q, Wang T (2009) Combined statin/coenzyme Q10 as adjunctive treatment of chronic heart failure. Med Hypotheses 73(3):306–308. doi: 10.1016/j.mehy.2009.03.027 PubMedGoogle Scholar
  104. Olbrich C, Muller RH (1999) Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. Int J Pharm 180(1):31–39PubMedGoogle Scholar
  105. Olbrich C, Kayser O, Muller RH (2002) Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)-effect of surfactants, storage time and crystallinity. Int J Pharm 237(1–2):119–128PubMedGoogle Scholar
  106. Ondarroa M, Sharma SK, Quinn PJ (1986) Solvation properties of ubiquinone-10 in solvents of different polarity. Biosci Rep 6(9):783–796. doi: 10.1007/bf01117101 PubMedGoogle Scholar
  107. Onoue S, Uchida A, Kuriyama K, Nakamura T, Seto Y, Kato M, Hatanaka J, Tanaka T, Miyoshi H, Yamada S (2012) Novel solid self-emulsifying drug delivery system of coenzyme Q10 with improved photochemical and pharmacokinetic behaviors. Eur J Pharm Sci 46(5):492–499. doi: 10.1016/j.ejps.2012.03.015 PubMedGoogle Scholar
  108. Overvad K, Diamant B, Holm L, Holmer G, Mortensen S, Stender S (1999) Coenzyme Q10 in health and disease. Eur J Clin Nutr 53(10):764PubMedGoogle Scholar
  109. Ozaki A, Muromachi A, Sumi M, Sakai Y, Morishita K, Okamoto T (2010) Emulsification of coenzyme Q10 using gum arabic increases bioavailability in rats and human and improves Food-processing suitability. J Nutr Sci Vitaminol (Tokyo) 56(1):41–47Google Scholar
  110. Palamakula A (2004) Biopharmaceutical classification and development of limonene-based self-nanoemulsified capsule dosage form of coenzyme Q10. Ph.D. thesis. Texas Texh University, LubbockGoogle Scholar
  111. Palamakula A, Nutan M, Khan M (2004) Response surface methodology for optimization and characterization of limonene-based coenzyme Q10 self-nanoemulsified capsule dosage form. AAPS PharmSciTech 5(4):114–121. doi: 10.1208/pt050466 Google Scholar
  112. Palamakula A, Soliman M, Khan MMA (2005) Regional permeability of coenzyme Q10 in isolated rat gastrointestinal tracts. Pharmazie 60(3):212–214PubMedGoogle Scholar
  113. Pepe S, Marasco SF, Haas SJ, Sheeran FL, Krum H, Rosenfeldt FL (2007) Coenzyme Q10 in cardiovascular disease. Mitochondrion 7(Supplement 1):S154–S167. doi: 10.1016/j.mito.2007.02.005 PubMedGoogle Scholar
  114. Piao H, Ouyang M, Xia D, Quan P, Xiao W, Song Y, Cui F (2011) In vitro—in vivo study of CoQ10-loaded lipid nanoparticles in comparison with nanocrystals. Int J Pharm 419(1–2):255–259. doi: 10.1016/j.ijpharm.2011.07.016 PubMedGoogle Scholar
  115. Porter CJH, Charman WN (2001) Lipid-based formulations for oral administration: opportunities for bioavailability enhancement and lipoprotein targeting of lipophilic drugs. J Recept Signal Transduct Res 21(2–3):215–257. doi: 10.1081/RRS-100107429 PubMedGoogle Scholar
  116. Pouton CW (1985) Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm 27(2–3):335–348. doi: 10.1016/0378-5173(85)90081-x Google Scholar
  117. Pouton CW (2000) Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and `self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 11(Supplement 2):S93–S98. doi: 10.1016/s0928-0987(00)00167-6 PubMedGoogle Scholar
  118. Pravst I, Zmitek K, Zmitek J (2010) Coenzyme Q10 contents in foods and fortification strategies. Crit Rev Food Sci Nutr 50(4):269PubMedGoogle Scholar
  119. Probst R, Lim J, Bird D, Pole G, Sato A, Claybaugh J (2006) Gender differences in the blood volume of conscious Sprague-Dawley rats. J Am Assoc Lab Anim Sci 45(2):49PubMedGoogle Scholar
  120. Prosek M, Smidovnik A, Fir M, Strazisar M, Golc-Wondra A, Andrensek S, Zmitek J (2005) Water-soluble coenzyme q10 in inclusion complex with beta-cyclodextrin, process of preparing, and use thereofGoogle Scholar
  121. Prosek M, Butinar J, Lukanc B, Fir MM, Milivojevic L, Krizman M, Smidovnik A (2008) Bioavailability of water-soluble CoQ10 in beagle dogs. J Pharm Biomed Anal 47(4–5):918–922. doi: 10.1016/j.jpba.2008.04.007 PubMedGoogle Scholar
  122. Quinzii CM, Hirano M (2010) Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev 16(2):183–188. doi: 10.1002/ddrr.108 PubMedGoogle Scholar
  123. Ravichandran R (2009) Nanotechnology-based drug delivery systems. Nanobiotechnol 5(1):17–33. doi: 10.1007/s12030-009-9028-2 Google Scholar
  124. Reahal S, Wrigglesworth J (1992) Tissue concentrations of coenzyme Q10 in the rat following its oral and intraperitoneal administration. Drug Metab Dispos 20(3):423–427PubMedGoogle Scholar
  125. Roffe L, Schmidt K, Ernst E (2004) Efficacy of coenzyme Q10 for improved tolerability of cancer treatments: a systematic review. J Clin Oncol 22(21):4418–4424. doi: 10.1200/jco.2004.02.034 PubMedGoogle Scholar
  126. Rosenfeldt F, Hilton D, Pepe S, Krum H (2003) Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. BioFactors 18(1–4):91–100. doi: 10.1002/biof.5520180211 PubMedGoogle Scholar
  127. Sakata T, Furuya R, Shimazu T, Odamaki M, Ohkawa S, Kumagai H (2008) Coenzyme Q10 administration suppresses both oxidative and antioxidative markers in hemodialysis patients. Blood Purif 26(4):371–378PubMedGoogle Scholar
  128. Sarter B (2002) Coenzyme Q10 and cardiovascular disease: a review. J Cardiovasc Nurs 16(4):9–20PubMedGoogle Scholar
  129. Scalori V, Alessandri M, Giovannini L, Bertelli A (1990) Plasma and tissue concentrations of coenzyme Q10 in the rat after intravenous, oral and topical administrations. Int J Tissue React 12(3):149PubMedGoogle Scholar
  130. Schaars CF, Stalenhoef AF (2008) Effects of ubiquinone (coenzyme Q10) on myopathy in statin users. Curr Opin Lipidol 19(6):553–557PubMedGoogle Scholar
  131. Schulz C, Obermüller-Jevic UC, Hasselwander O, Bernhardt J, Biesalski HK (2006) Comparison of the relative bioavailability of different coenzyme Q10 formulations with a novel solubilizate (Solu™ Q10). Int J Food Sci Nutr 57(7–8):546–555. doi: 10.1080/09637480601058320 PubMedGoogle Scholar
  132. Serebruany VL, Ordonez JV, Herzog WR, Rohde M, Mortensen SA, Folkers K, Gurbel PA (1997) Dietary coenzyme Q10 supplementation alters platelet size and inhibits human vitronectin (CD51/CD61) receptor expression. J Cardiovasc Pharmacol 29(1):16–22PubMedGoogle Scholar
  133. Shegokar R, Müller RH (2010) Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399(1–2):129–139. doi: 10.1016/j.ijpharm.2010.07.044 PubMedGoogle Scholar
  134. Shults CW (2005) Therapeutic role of coenzyme Q(10) in Parkinson’s disease. Pharmacol Ther 107(1):120–130PubMedGoogle Scholar
  135. Shults CW, Haas R (2005) Clinical trials of coenzyme Q10 in neurological disorders. BioFactors 25(1):117–126PubMedGoogle Scholar
  136. Shults CW, Flint Beal M, Song D, Fontaine D (2004) Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol 188(2):491–494. doi: 10.1016/j.expneurol.2004.05.003 PubMedGoogle Scholar
  137. Singh R, Niaz M, Rastogi V, Rastogi S (1998) Coenzyme Q in cardiovascular disease. J Assoc Physicians India 46(3):299PubMedGoogle Scholar
  138. Singh RB, Niaz MA, Kumar A, Sindberg CD, Moesgaard S, Littarru GP (2005) Effect on absorption and oxidative stress of different oral Coenzyme Q10 dosages and intake strategy in healthy men. BioFactors 25(1–4):219–224. doi: 10.1002/biof.5520250127 PubMedGoogle Scholar
  139. Singh U, Devaraj S, Jialal I (2007) Coenzyme Q10 supplementation and heart failure. Nutr Rev 65(6):286–293. doi: 10.1111/j.1753-4887.2007.tb00306.x PubMedGoogle Scholar
  140. Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, Santorelli FM, Miranda AF, Bonilla E, Mojon DS, Barreira AA, King MP, DiMauro S (1997) Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 48(5):1238–1243PubMedGoogle Scholar
  141. Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM, Krisp A, Menke T, Schade-Brittinger C, Oertel WH, Höglinger GU (2008) Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 23(7):942–949. doi: 10.1002/mds.22023 PubMedGoogle Scholar
  142. Stocker R, Suarna C (1993) Extrecellular reduction of ubiquinone-1 and-10 by human Hep G2 and blood cells. Biochim Biophys Acta 1158(1):15–22PubMedGoogle Scholar
  143. Supersaxo AW, Weder MA, Weder HG (2003) Microemulsion-preconcentrates and microemulsions comprising coenzyme Q10Google Scholar
  144. Terao K, Nakata D, Fukumi H, Schmid G, Arima H, Hirayama F, Uekama K (2006) Enhancement of oral bioavailability of coenzyme Q10 by complexation with [γ]-cyclodextrin in healthy adults. Nutr Res 26(10):503–508. doi: 10.1016/j.nutres.2006.08.004 Google Scholar
  145. Tran MT, Mitchell TM, Kennedy DT, Giles JT (2001) Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharmacotherapy 21(7):797–806. doi: 10.1592/phco.21.9.797.34564 PubMedGoogle Scholar
  146. Ullmann U, Metzner J, Schulz C, Perkins J, Leuenberger B (2005) A new Coenzyme Q10 tablet-grade formulation (all-Q) is bioequivalent to Q-Gel and both have better bioavailability properties than Q-SorB. J Med Food 8(3):397–399PubMedGoogle Scholar
  147. Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ (2010) Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 19(4):535–554. doi: 10.1517/13543781003727495 PubMedGoogle Scholar
  148. Wahlqvist ML, Wattanapenpaiboon N, Savige GS, Kannar D (1998) Bioavailability of two different formulations of coenzyme Q 10 in healthy subjects. Asia Pac J Clin Nutr 7(1):37–40Google Scholar
  149. Wajda R (2006) emulsive water-soluble concentrates. United States PatentGoogle Scholar
  150. Wajda R, Zirkel J, Schaffer T (2007) Increase of bioavailability of coenzyme Q(10) and vitamin E. J Med Food 10(4):731–734PubMedGoogle Scholar
  151. Watson PS, Scalia GM, Galbraith A, Burstow DJ, Bett N, Aroney CN (1999) Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. J Am Coll Cardiol 33(6):1549–1552PubMedGoogle Scholar
  152. Weant KA, Smith KM (2005) The role of coenzyme Q10 in heart failure. Ann Pharmacother 39(9):1522–1526. doi: 10.1345/aph.1E554 PubMedGoogle Scholar
  153. Weber C, Sejersgård J, Mortensen S, Paulsen G, Hølmer G (1994) Antioxidative effect of dietary coenzyme Q10 in human blood plasma. Int J Vitam Nutr Res 64(4):311PubMedGoogle Scholar
  154. Weber C, Bysted A, Hølmer G (1997) Intestinal absorption of coenzyme Q10 administered in a meal or as capsules to healthy subjects. Nutr Res 17(6):941–945. doi: 10.1016/s0271-5317(97)00059-6 Google Scholar
  155. Weis M, Mortensen SA, Rassing MR, Møller-Sonnergaard J, Poulsen G, Rasmussen SN (1994) Bioavailability of four oral coenzyme Q10 formulations in healthy volunteers. Mol Aspects Med 15(Suppl):s273–s280PubMedGoogle Scholar
  156. Wyman M, Leonard M, Morledge T (2010) Coenzyme Q10: a therapy for hypertension and statin-induced myalgia? Cleve Clin J Med 77(7):435–442. doi: 10.3949/ccjm.77a.09078 PubMedGoogle Scholar
  157. Xia S, Xu S, Zhang X (2006) Optimization in the preparation of coenzyme Q10 nanoliposomes. J Agric Food Chem 54(17):6358–6366. doi: 10.1021/jf060405o PubMedGoogle Scholar
  158. Xia S, Xu S, Zhang X, Zhong F (2007) Effect of Coenzyme Q10 incorporation on the characteristics of nanoliposomes. J Phys Chem B 111(9):2200–2207. doi: 10.1021/jp066130x PubMedGoogle Scholar
  159. Young AJ, Johnson S, Steffens DC, Doraiswamy PM (2007) Coenzyme Q10: a review of its promise as a neuroprotectant. CNS Spectr 12(1):62–68PubMedGoogle Scholar
  160. Zaghloul A, Gurley B, Khan M, Bhagavan H, Chopra R, Reddy I (2002) Bioavailability assessment of oral coenzyme Q10 formulations in dogs. Drug Dev Ind Pharm 28(10):1195–1200. doi: 10.1081/DDC-120015352 PubMedGoogle Scholar
  161. Zhang Y, Åberg F, Appelkvist E-L, Dallner G, Ernster L (1995) Uptake of dietary coenzyme Q supplement is limited in rats. J Nutr 125(3):446–453PubMedGoogle Scholar
  162. Zita Č, Overvad K, Mortensen SA, Sindberg CD, Moesgaard S, Hunter DA (2003) Serum coenzyme Q10 concentrations in healthy men supplemented with 30 mg or 100 mg coenzyme Q10 for two months in a randomised controlled study. BioFactors 18(1–4):185–193. doi: 10.1002/biof.5520180221 PubMedGoogle Scholar
  163. Žmitek J, Šmidovnik A, Fir M, Prošek M, Žmitek K, Walczak J, Pravst I (2008) Relative bioavailability of two forms of a novel water-soluble coenzyme Q10. Ann Nutr Metab 52(4):281–287PubMedGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2013

Authors and Affiliations

  1. 1.Department of Pharmaceutics, Biopharmaceutics and NutriCosmetics, Institute of PharmacyFreie Universität BerlinBerlinGermany
  2. 2.PharmaSol GmbHBerlinGermany

Personalised recommendations