Skip to main content

Advertisement

Log in

Topical delivery of Idebenone using nanostructured lipid carriers: evaluations of sun-protection and anti-oxidant effects

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The objective of present study was to develop nanostructured lipid carriers (NLC) for topical delivery of antioxidant drug and evaluation of its sun protection efficacy. In the present study attempts have been made to formulate Idebenone loaded nanostructured lipid carriers (INLC) by using solvent precipitation method. Preformulation study evidenced for selection of Captex 500 P as an oil phase in which Idebenone has saturation solubility of 0.266 ± 0.032 g/ml. Compritol 888 ATO and ethanol were selected as solid lipid and solvent respectively. Surfactant and co-surfactant as Labrasol and Transcutol P have given stable formulations on the basis of HLB required for stabilization, respect to oil phase. INLC has particle size of 605 ± 4.01 nm and %EE of 82.58 ± 2.20 %. Optimized batches were subjected for crystallographic investigation, in vitro skin permeation study, drug deposition study, SPF determination and antioxidant activity. XRD, DSC studies illustrated that partial amorphization of Idebenone by molecularly dispersion within lipid blend leads for entrapment of drug. Permeation data showed that optimized INLC has flux value (Jss) of 7.87 μg cm−2 h−1. High significance (P < 0.001) of drug deposition in skin was observed between INLC and plain Idebenone gel. SPF value for INLC has 23 which represents that lipid nanocarriers have standards of blocking of 94–96 % of UVB rays. Such high skin deposition and SPF leads to more antioxidant effect of formulations. Hence lipid nanocarriers such as NLC have potential as an antioxidant and sun protection for topical drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SLN:

Solid lipid nanoparticles

NLC:

Nanostructured lipid carriers

INLC:

Idebenone loaded nanostructured lipid carriers

NE:

Nanoemulsions

HLB:

Hydrophilic lipophilic balance

XRD:

X-ray crystallography

DSC:

Differential scanning calorimetry

TEM:

Transmission electron microscopy

DDW:

Double distilled water

CPCSEA:

Committee for purpose, control and supervision of experimentation on animals

IAEC:

Institutional animal ethical committee

PBS:

Phosphate buffer saline

SPF:

Sun protection factor

DPPH 1:

1-Diphenyl-2-picrylhydrazyl

LD:

Laser diffractometer

MED:

Minimal erythema dose

References

  • Barry BW (1983) Dermatological formulations. Marcel Dekker, New York, pp 49–94

    Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Chakravarti B, Chakravarti DN (2006) Oxidative modification of proteins: age related changes. Gerontology 53:128–139

    Article  PubMed  Google Scholar 

  • Choi MJ, Maibach HI (2005) Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 18:209–219

    Article  CAS  PubMed  Google Scholar 

  • Dingler A, Blum RP, Niehus H, Muller RH, Gohla S (1999) Solid lipid nanoparticles (SLN/Lipopearls): a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul 16:751–767

    Article  CAS  PubMed  Google Scholar 

  • Dong KK, Damaghi N, Kibitel J, Canning MT, Smiles KA, Yarosh DB (2007) A comparison of the relative antioxidant potency of L-ergothioneine and Idebenone. Blackwell Publishing. J Cosmet Dermatol 6:183–188

    Article  PubMed  Google Scholar 

  • du Plessis J, Ramchandran C, Weiner N, Muller DG (1994) The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm 103:277–282

    Article  Google Scholar 

  • Essa EA, Bonner MC, Barry BW (2002) Iontophoretic estradiol skin delivery and tritium exchange in ultradeformable liposomes. Int J Pharm 240:55–66

    Article  CAS  PubMed  Google Scholar 

  • Essa EA, Bonner MC, Barry BW (2003) Electroporation and ultradeformable liposomes; human skin barrier repair by phospholipid. J Control Release 92:163–172

    Article  CAS  PubMed  Google Scholar 

  • Foldvari M, Gesztes A, Mezei M (1990) Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul 7:479–489

    Article  CAS  PubMed  Google Scholar 

  • Fry DW, White C, Goldman DJ (1978) Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem 90:809–815

    Article  CAS  PubMed  Google Scholar 

  • Gogna D, Jain SK, Yadav AK, Agrawal GP (2007) Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate. Curr Drug Deliv 4:153–159

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hatano T, Edamatsu R, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-pierylhydrazyl radical. Chem Pharm Bull 37:2016–2021

    Article  CAS  Google Scholar 

  • Higuchi T (1960) Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Mater 11:85–97

    Google Scholar 

  • Hoppe U, Bergemann J, Diembeck W, Ennen J, Gohla S et al (1999) Coenzyme Q10, a cutaneous antioxidant and energizer. BioFactors 9:371–378

    Article  CAS  PubMed  Google Scholar 

  • Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces 45:167–173

    Article  CAS  PubMed  Google Scholar 

  • Jacobs C, Muller RH (2002) Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res 19(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Jenning V, Schafer-Korting M, Gohla S (2000a) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 66:115–126

    Article  CAS  PubMed  Google Scholar 

  • Jenning V, Thunemann AF, Gohla SH (2000b) Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 199:167–177

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Patravale V (2008) Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 346(1–2):124–132

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Chung SI, Lee MH, Shim CK (1998) Delivery of hydrocortisone from liposomal suspensions to the hairless mouse skin following topical application under non-occlusive and occlusive condition. J Microencapsul 15:21–29

    Article  CAS  PubMed  Google Scholar 

  • Levy MY, Schutze W, Fuhrer C, Benita S (1994) Characterization of diazepam submicron emulsion interface: role of oleic acid. J Microencapsul 11:79–92

    Article  CAS  PubMed  Google Scholar 

  • Li X, Nie S-F, Kong J, Li N, Ju C-Y, Pan W-S (2008) A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm 363:177–182

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195

    Article  CAS  PubMed  Google Scholar 

  • McDaniel DH, Neudecker BA, DiNardo JC, Lewis JA II, Maibach HI (2005) Clinical efficacy assessment in photodamaged skin of 0.5 and 1.0 % Idebenone. Blackwell Publishing J Cosmet Dermatol 4:167–173

    Article  CAS  Google Scholar 

  • Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65:375–398

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  PubMed  Google Scholar 

  • Moore A (2002) The biochemistry of beauty. The science and pseudo-science of beautiful skin. EMBORe 3:714–717

    Article  CAS  Google Scholar 

  • Motenegro L, Carbone C, Condorelli G, Drago R, Puglisi G (2006) Effect of oil phase lipophilicity on in vitro drug release from O/W microemulsions with low surfactant concentration. Drug Dev Ind Pharm 32:539–548

    Article  Google Scholar 

  • Muller RH, Mehnert W, Lucks JS, Schwarz C, zur Muhlen A et al (1995) Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm 41:62–69

    CAS  Google Scholar 

  • Muller RH, Ruhl D, Runge S, Schulze-Forster K, Mehnert W (1997) Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res 14:458–462

    Article  CAS  PubMed  Google Scholar 

  • Muller RH, Mader K, Gohla S (2000a) Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  CAS  PubMed  Google Scholar 

  • Muller R. Lippacher A, Gohla S (2000b) Solid–liquid (semi-solid) lipid particles and method of producing highly concentrated lipid particle dispersions. German Patent Application 199, 45, 203.2

    Google Scholar 

  • Muller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    Article  CAS  PubMed  Google Scholar 

  • Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A (2003) Microemulsions for topical delivery of estradiol. Int J Pharm 254:99–107

    Article  CAS  PubMed  Google Scholar 

  • Puleo A, Niemi R, Jarvinen T, Puglisi G, Pignatello R (2004) Chemical and enzymatic stability evaluation of lipoamino acid esters of Idebenone. Eur J Pharm Biopharm 57:343–346

    Article  CAS  PubMed  Google Scholar 

  • Schubert MA, Muller-Goymann CC (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles-evaluation of the method and process parameters. Eur J Pharm Biopharm 55(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Schufer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443

    Article  Google Scholar 

  • Schulze R (1956) Einige Versuche une Bermkungen zum Problem der hendelsüblichen Lichtschulzmittel. Parfum Kosmet 37:310–315

    Google Scholar 

  • Schwarz C, Mehnert W (1999) Solid lipid nanoparticles (SLN) for the controlled drug delivery. Drug incorporation and physicochemical characterization. J Microencapsul 16:205–213

    Article  CAS  PubMed  Google Scholar 

  • Souto EB, Muller RH (2005) SLN and NLC for topical delivery of ketoconazole. J Microencapsul 22:501–510

    Article  CAS  PubMed  Google Scholar 

  • Souto EB, Wissing SA, Barbosa CM, Muller RH (2004) Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 278:71–77

    Article  CAS  PubMed  Google Scholar 

  • Teeranachaideekul V, Souto EB, Junyaprasert VB, Muller RH (2007a) Cetyl palmitate-based NLC for topical delivery of coenzyme Q10-development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm 67:141–148

    Article  CAS  PubMed  Google Scholar 

  • Teeranachaideekul V, Muller RH, Junyaprasert VB (2007b) Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)-effects of formulation parameters on physicochemical stability. Int J Pharm 340(1–2):198–206

    Article  CAS  PubMed  Google Scholar 

  • Thachrodi D, Panduranga RK (1994) Transdermal absorption of nifedipine from microemulsions of lipophilic skin penetration enhancers. Int J Pharm 111:235–240

    Article  Google Scholar 

  • Uchida T, Lee CK, Sekiya N, Goto S (1993) Enhancement effect of an ethanol/Panasate 800 binary vehicle on anti-inflammatory drug permeation across excised hairless mouse skin. Biol Pharm Bull 16:168–171

    Article  CAS  PubMed  Google Scholar 

  • Uner M, Wissing SA, Yener G, Muller RH (2005a) Skin moisturizing effect and skin penetration of ascorbyl palmitate entrapped in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) incorporated into hydrogel. Pharmazie 60:751–755

    CAS  PubMed  Google Scholar 

  • Uner M, Wissing SA, Yener G, Muller RH (2005b) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for application of ascorbyl palmitate. Pharmazie 60:577–582

    CAS  PubMed  Google Scholar 

  • Vrhovnik K, Kristl J, Sentjure M, Smid-Korbar J (1998) Influence of liposome bilayer fluidity on the transport of encapsulated substances into the skin, studied by EPR. Pharm Res 15:525–530

    Article  CAS  PubMed  Google Scholar 

  • Walters KA, Brain KR, Green DM, James VG, Watkinson AC, Sands RH (1998) Comparision of the transdermal delivery of estradiol from two gel formulations. Maturitas 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Williams A (2003) Structure and function of human skin. In: Williams A (ed) Transdermal and topical drug delivery. Pharmaceutical Press, London, pp 1–26

    Google Scholar 

  • Wissing SA, Muller RH (2001) Solid lipid nanoparticles (SLN): a novel carrier for UV blockers. Pharmazie 56:783–786

    CAS  PubMed  Google Scholar 

  • Wissing SA, Muller RH (2002a) Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release 81:225–233

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Muller RH (2002b) The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int J Pharm 242:377–379

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Muller RH (2003a) Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 254:65–68

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Muller RH (2003b) The influence of solid lipid nanoparticles on skin hydration and viscoelasticity: in vivo study. Eur J Pharm Biopharm 56:67–72

    Article  CAS  PubMed  Google Scholar 

  • Wissing S, Lippacher A, Muller R (2001) Investigations on the occlusive properties of solid lipid nanoparticles (SLN). J Cosmet Sci 52:313–324

    CAS  PubMed  Google Scholar 

  • Yamashita F, Hashida M (2003) Mechanistic and empirical modeling of skin permeation of drug. Adv Drug Deli Rev 55:1185–1199

    Article  CAS  Google Scholar 

  • Yoshiyuki K, Michinori K, Tadato T, Shigeru A, Hiromichi O (1981) Studies on Scutellariae radix. IV. Effects on lipid peroxidation in rat liver. Chem Pharm Bull 29:2610–2617

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Principal, Poona College of Pharmacy, Pune and Principal, Bharati Vidyapeeth College of Pharmacy, Kolhapur for providing necessary facilities for this research work. The authors are highly thankful to Biocon., Bangalore, India for providing Idebenone as a gift sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Salunkhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salunkhe, S.S., Bhatia, N.M., Pokharkar, V.B. et al. Topical delivery of Idebenone using nanostructured lipid carriers: evaluations of sun-protection and anti-oxidant effects. Journal of Pharmaceutical Investigation 43, 287–303 (2013). https://doi.org/10.1007/s40005-013-0079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-013-0079-y

Keywords

Navigation