Skip to main content

Advertisement

Log in

Expedition of liposomes to intracellular targets in solid tumors after intravenous administration

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Liposomes as a drug delivery system provides a leading approach for the systemic (intravenous) administration of drugs. Several approaches to kill tumor cells specifically have been developed, but still there is dearth in their selectivity. Among all other nano-carrier systems, liposomal formulations of cytotoxic drugs have received an appreciable recommendation in the form of clinical approvals. Liposomal delivery provides the benefits of reduced toxicity and enhanced efficacy for the treatment of cancer. However, delivery of liposomes to desired cell type with its further trafficking to desired intracellular organelle is a challenging, yet a promising approach for safer cancer therapeutics. Several anatomical-physiological barriers starting from systemic to cellular to intracellular levels are required to be overcome to achieve efficient cancer therapy. This review discusses the barriers associated with the delivery of liposomes from the extracellular to intracellular compartments of a solid tumor and further summarizes the development of liposomal carrier system to overcome these barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen TM (1981) A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochim Biophys Acta 640:385–397

    Article  PubMed  CAS  Google Scholar 

  • Aronsohn AI, Hughes JA (1998) Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy. J Drug Target 5:163–169

    Article  PubMed  CAS  Google Scholar 

  • Bandak S, Goren D, Horowitz A et al (1999) Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs 10:911–920

    Article  PubMed  CAS  Google Scholar 

  • Bloemen PG, Henricks PA, van Bloois L et al (1995) Adhesion molecules: a new target for immunoliposome-mediated drug delivery. FEBS Lett 357:140–144

    Article  PubMed  CAS  Google Scholar 

  • Boddapati SV, Tongcharoensirikul P, Hanson RN et al (2005) Mitochondriotropic liposomes. J Liposome Res 15:49–58

    PubMed  CAS  Google Scholar 

  • Boddapati SV, Gerard GMD, Suna E et al (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8:2559–2563

    Article  PubMed  CAS  Google Scholar 

  • Chanan-Khan A, Szebeni J, Savay S et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14:1430–1437

    Article  PubMed  CAS  Google Scholar 

  • Chiu SJ, Marcucci G, Lee RJ (2006a) Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes. Anticancer Res 26:1049–1056

    PubMed  CAS  Google Scholar 

  • Chiu SJ, Liu S, Perrotti D et al (2006b) Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J Control Release 112:199–207

    Article  PubMed  CAS  Google Scholar 

  • Cho KC, Kim SH, Jeong JH et al (2005) Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(l-lysine) conjugate. Macromol Biosci 5:512–519

    Article  PubMed  CAS  Google Scholar 

  • Chonn A, Cullis PR, Devine DV (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146:4234–4241

    PubMed  CAS  Google Scholar 

  • Chu CJ, Dijkstra J, Lai MZ et al (1990) Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm Res 7:824–834

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420

    Article  PubMed  CAS  Google Scholar 

  • Cuvier C, Roblot-Treupel L, Millot JM et al (1992) Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem Pharmacol 44:509–517

    Article  PubMed  CAS  Google Scholar 

  • Daemen T, Hofstede G, Ten Kate MT et al (1995) Liposomal doxorubicin induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer 61:716–721

    Article  PubMed  CAS  Google Scholar 

  • Derycke AS, De Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG liposomes. Int J Oncol 20:181–187

    PubMed  CAS  Google Scholar 

  • Devine DV, Wong K, Serrano K et al (1994) Liposome–complement interactions in rat serum: implications for liposome survival studies. Biochim Biophys Acta 1191:43–51

    Article  PubMed  CAS  Google Scholar 

  • Dimas K, Demetzos C, Vaos V et al (2001) Labdane type diterpenes down-regulate the expression of c-Myc protein, but not of Bcl-2, in human leukemia T-cells undergoing apoptosis. Leuk Res 25:449–454

    Article  PubMed  CAS  Google Scholar 

  • Drummond DC, Meyer O, Hong KL et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):91–743

    Google Scholar 

  • Ducat E, Deprez J, Gillet A et al (2011) Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int J Pharm 420:319–332

    Article  PubMed  CAS  Google Scholar 

  • Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51:10–14

    Article  PubMed  CAS  Google Scholar 

  • Elbayoumi TA, Torchilin VP (2007) Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur J Pharm Sci 32:159–168

    Article  PubMed  CAS  Google Scholar 

  • Ellerhorst JA, Bedikian A, Ring S et al (1999) Phase II trial of doxil for patients with metastatic melanoma refractory to frontline therapy. Oncol Rep 6(5):1097–1099

    PubMed  CAS  Google Scholar 

  • Fittipaldi A, Ferrari A, Zoppe AM et al (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278:34141–34149

    Article  PubMed  CAS  Google Scholar 

  • Forssen EA, Male-Brune R, Adler-Moore JP et al (1996) Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res 56:2066–2075

    PubMed  CAS  Google Scholar 

  • Frank MM (1993) The reticuloendothelial system and bloodstream clearance. J Lab Clin Med 122:487–488

    PubMed  CAS  Google Scholar 

  • Futaki S (2002) Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int J Pharm 245:1–7

    Article  PubMed  CAS  Google Scholar 

  • Gabizon AA (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16:285–294

    Article  CAS  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Horowitz AT, Goren D et al (2003) In vivo fate of folate-targeted polyethene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559

    PubMed  CAS  Google Scholar 

  • Garcia AA, Kempf RA, Rogers M et al (1998) A phase II study of Doxil (liposomal doxorubicin): lack of activity in poor prognosis soft tissue sarcomas. Ann Oncol 9(10):1131–1133

    Article  PubMed  CAS  Google Scholar 

  • Gijsens A, Derycke A, Missiaen L et al (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferring conjugated PEGliposomes. Int J Cancer 101:78–85

    Article  PubMed  CAS  Google Scholar 

  • Goren D, Horowitz AT, Tzemach D et al (2000) Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 6:1949–1957

    PubMed  CAS  Google Scholar 

  • Guillemard V, Saragovi HU (2004) Novel approaches for targeted cancer therapy. Curr Cancer Drug Targets 4:313–326

    Article  PubMed  CAS  Google Scholar 

  • Guo WJ, Lee T, Sudimack J et al (2000) Receptor-specific delivery of liposomes via folate-PEG-Chol. J Liposome Res 10:179–195

    Article  CAS  Google Scholar 

  • Gupta B, Torchilin VP (2006) Transactivating transcriptional activator-mediated drug delivery. Expert Opin Drug Deliv 3:177–190

    Article  PubMed  CAS  Google Scholar 

  • Hafez IM, Cullis PR (2001) Roles of lipid polymorphism in intracellular delivery. Adv Drug Deliv Rev 47:139–148

    Article  PubMed  CAS  Google Scholar 

  • Harrington KJ, Lewanski CR, Northcote AD et al (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12:493–496

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama H, Akita H, Maruyama K et al (2004) Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm 281:25–33

    Article  PubMed  CAS  Google Scholar 

  • Huang SK, Martin FJ, Jay G et al (1993) Extravasation and transcytosis of liposomes in Kaposi’s sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. Am J Pathol 143:10–14

    PubMed  CAS  Google Scholar 

  • Iinuma H, Maruyama K, Okinaga K et al (2002) Intracellular targeting therapy of cisplatin encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99:130–137

    Article  PubMed  CAS  Google Scholar 

  • Ishida O, Maruyama K, Tanahashi H et al (2001) Liposomes bearing polyethyleneglycol coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Maeda R, Ichihara M et al (2003) Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release 88(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Joshee N, Bastola DR, Cheng PW (2002) Transferrin facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum Gene Ther 13:1991–2004

    Article  PubMed  CAS  Google Scholar 

  • Kakudo T, Chaki S, Futaki S et al (2004) Transferrin-modified liposomes equipped with a pH sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43:5618–5628

    Article  PubMed  CAS  Google Scholar 

  • Kamiya H, Akita H, Harashima H (2003) Pharmacokinetic and pharmacodynamic considerations in gene therapy. Drug Discov Today 8:990–996

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Akita H (2006a) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58:32–45

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Akita H (2006b) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58(1):32–45

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Futaki S et al (2006c) High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 281:3544–3551

    Article  PubMed  CAS  Google Scholar 

  • Kogure K, Moriguchi R, Sasaki K et al (2004) Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 98:317–323

    Article  PubMed  CAS  Google Scholar 

  • Koppelhus U, Awasthi SK, Zachar V et al (2002) Cell dependent differential cellular uptake of PNA, peptides, and PNA–peptide conjugates. Antisense Nucl Acid Drug Dev 12:51–63

    Article  CAS  Google Scholar 

  • Kutscher HL, Chao P, Deshmukh M et al (2010) Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release 143:31–37

    Article  PubMed  CAS  Google Scholar 

  • Laginha KM, Verwoert S, Charrois GJ et al (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 11:6944–6949

    Article  PubMed  CAS  Google Scholar 

  • Lai MZ, Duzgunes N, Szoka FC (1985) Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membrane. Biochemistry 24:1646–1653

    Article  PubMed  CAS  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321

    Article  PubMed  CAS  Google Scholar 

  • Laverman P, Carstens MG, Boerman OC et al (2001) Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 298:607–612

    PubMed  CAS  Google Scholar 

  • Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome entrapped doxorubicin in vitro. Biochim Biophys Acta 1233:134–144

    Article  PubMed  Google Scholar 

  • Li X, Ding L, Xu Y et al (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang J, Wientjes MG, et al. (2011) Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev published online on 3 May 2011, http://dx.doi.org/10.1016/j.addr.2011.04.006

  • Liu D (1997) Biological factor involved in blood clearance of liposomes by liver. Adv Drug Deliv Rev 24:201–213

    Article  CAS  Google Scholar 

  • Liu D, Mori A, Huang L (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95–101

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Liu F, Song YK (1995) Monosialoganglioside GM1 shortens the blood circulation time of liposomes in rats. Pharm Res 12:508–512

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xu S, Teng L et al (2011) Synthesis and evaluation of a novel lipophilic folate receptor targeting ligand. Anticancer Res 31:1521–1525

    PubMed  CAS  Google Scholar 

  • Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Malhi SS, Budhiraja A, Arora S et al (2012) Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptors targeted mitocancerotropic liposomes. Int J Pharm 432:63–74

    Google Scholar 

  • Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Yuda T, Okamoto A (1992) Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta 1128:4–9

    Google Scholar 

  • Moghimi SM, Davis SS (1994) Innovations in avoiding particle clearance from blood by kupffer cells—cause for reflection. Crit Rev Ther Drug Carrier Syst 11:31–59

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Patel HM (1993) Serum factors that regulate phagocytosis of liposomes by Kupffer cells. Biochem Soc Trans 21:128S

    PubMed  CAS  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T et al (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22:2131–2135

    PubMed  CAS  Google Scholar 

  • Nishiya T, Sloan S (1996) Interaction of RGD liposomes with platelets. Biochem Biophys Res Commun 224:242–245

    Article  PubMed  CAS  Google Scholar 

  • Padari K, Saalik P, Hansen M (2005) Cell transduction pathways of transportans. Bioconjug Chem 16:1399–1410

    Article  PubMed  CAS  Google Scholar 

  • Pakunlu RI, Wang Y, Saad M et al (2006) In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J Control Release 114:153–162

    Article  PubMed  CAS  Google Scholar 

  • Paliwal SR, Paliwal R, Mishra N et al (2010) A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 10:343–353

    Article  PubMed  CAS  Google Scholar 

  • Paliwal SR, Paliwal R, Pal HC et al (2012) Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol Pharm 9:176–186

    Article  PubMed  CAS  Google Scholar 

  • Parente RA, Nir S, Szoka FC Jr (1988) pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide. J Biol Chem 263:4724–4730

    PubMed  CAS  Google Scholar 

  • Raagel H, Saalik P, Hansen M et al (2009) CPP-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release 139:108–117

    Article  PubMed  CAS  Google Scholar 

  • Rai S, Paliwal R, Vaidya B et al (2008) Targeted delivery of doxorubicin via estrone-appended liposomes. J Drug Targeting 16:455–463

    Article  CAS  Google Scholar 

  • Reddy JA, Abburi C, Hofland H et al (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9:1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K et al (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  PubMed  CAS  Google Scholar 

  • Scherphof GL, Kamps JA (2001) The role of hepatocytes in the clearance of liposomes from the blood circulation. Prog Lipid Res 40(3):149–166

    Article  PubMed  CAS  Google Scholar 

  • Semple SC, Chonn A, Cullis PR (1996) Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry 35:2521–2525

    Article  PubMed  CAS  Google Scholar 

  • Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3:23–193

    Google Scholar 

  • Sha X, Guo J, Chen Y et al. Effect of phospholipid composition on pharmacokinetics and biodistribution of epirubicin liposomes. J Liposome Res 2011: Published online on October 24, 2011. (doi:10.3109/08982104.2011.627513)

  • Shehata T, Ogawara K, Higaki K, Kimura T (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359(1–2):272–279

    Google Scholar 

  • Shi G, Guo W, Stephenson SM et al (2001) Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release 80:309–319

    Article  Google Scholar 

  • Sipkins DA, Brooks PC, Cheresh DA, et al. (1996) Development of a new angiogenesis-specific liposome particle for use in diagnostic imaging and drug delivery. AACR Proceedings Washington, D.C. Am Assoc for Cancer Res

  • Siskind LJ (2005) Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr 37:143–153

    Article  PubMed  CAS  Google Scholar 

  • Sofou S (2007) Special focus: nanoparticles for cancer diagnosis & therapeutics—Review. Nanomedicine 2:711–724

    Article  PubMed  CAS  Google Scholar 

  • Sun QH, DeLisser HM, Zukowski MM et al (1996) Individually distinct Ig homology domains in PECAM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem 271:11090–11098

    Article  PubMed  CAS  Google Scholar 

  • Szebeni J, Muggia F, Gabizon A (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63:1020–1030

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Kojima H, Yamamoto H et al (2000) Polymer coating of liposomes with a modified polyvinyl alcohol and their systemic circulation and RES uptake in rats. J Control Release 68:195–205

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Kojima H, Yamamoto H et al (2001) Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J Control Release 75:83–91

    Article  PubMed  CAS  Google Scholar 

  • Tan PH, Manunta M, Ardjomand N (2003) Antibody targeted gene transfer to endothelium. J Gene Med 5:311–323

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  PubMed  CAS  Google Scholar 

  • Varner JA, Brooks PC, Cheresh DA (1995) Review: the integrin alpha V beta 3: angiogenesis and apoptosis. Cell Adhes Commun 3:367–374

    Article  PubMed  CAS  Google Scholar 

  • Vitas AI, Díaz R, Gamazo C (1996) Effect of composition and method of preparation of liposomes on their stability and interaction with murine monocytes infected with Brucella abortus. Antimicrob Agents Chemother 40:146–151

    PubMed  CAS  Google Scholar 

  • Vives E, Richard JP, Rispal C et al (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4:125–132

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducable TAT-HA fusogenic peptide enhances escape of TAT fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Huang L (1989) Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 28:9508–9514

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Ishida T, Ichihara M et al (2005) Influence of the physicochemical properties of liposomes on the accelerated blood clearance phenomenon in rats. J Control Release 104:91–102

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Liu Q, Lee RJ (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316:148–153

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Lu Y, Lee A et al (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci 10:350–357

    PubMed  CAS  Google Scholar 

  • Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53(19):6811–6824

    Article  PubMed  CAS  Google Scholar 

  • Xiang G, Wu J, Lu Y et al (2008) Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm 356:29–36

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Shinohara Y, Kakudo T et al (2005) Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm 303:1–7

    Article  PubMed  CAS  Google Scholar 

  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374):1290–1293

    Google Scholar 

  • Zhai G, Wu J, Xiang G (2009) Preparation, characterization and pharmacokinetics of folate receptor-targeted liposomes for docetaxel delivery. J Nanosci Nanotechnol 9(3):2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Zhai G, Wu J, Yu B et al (2010) A transferrin receptor-targeted liposomal formulation for docetaxel. J Nanosci Nanotechnol 10:5129–5136

    Article  PubMed  CAS  Google Scholar 

  • Zhao XB, Lee RJ (2004) Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliv Rev 56:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulator and inhibitory proteins. Nat Rev Immunol 9:729–740

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmik Sohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malhi, S., Dixit, K., Sohi, H. et al. Expedition of liposomes to intracellular targets in solid tumors after intravenous administration. Journal of Pharmaceutical Investigation 43, 75–87 (2013). https://doi.org/10.1007/s40005-013-0064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-013-0064-5

Keywords

Navigation