Skip to main content

Advertisement

Log in

Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in sodium alginate beads with or without hyaluronic acid

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Human adipose-derived mesenchymal stem cells (AD-MSCs) have attracted much interest as an alternative to autologous chondrocytes and bone marrow-derived mesenchymal stem cells for cell-based therapy to repair cartilage defects. Sodium alginate (SA) beads have been widely known as a conventional stem cell delivery system for cartilage repair. Hyaluronic acid (HA) has been known to induce cell proliferation and chondrogenic differentiation. Herein, we prepared AD-MSCs-encapsulating SA beads with HA (SA–HA beads) and without HA (SA beads). Then, the morphology, proliferation, and chondrogenic differentiation of AD-MSCs cultured in SA–HA beads or SA beads with a conventional chondrogenic media were evaluated. There was no discernible difference in the morphology of AD-MSCs between SA–HA and SA beads. However, the proliferation (MTT optical density and DNA contents) and chondrogenic differentiation (s-GAG contents and type II collagen staining) of AD-MSCs were significantly enhanced in SA–HA beads as compared to SA beads. The present results suggest that HA can be added to SA beads-based cell delivery systems of AD-MSCs in order to improve their chondrogenesis-inducing capacity for repair of cartilage defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SA:

Sodium alginate

HA:

Hyaluronic acid

MSCs:

Mesenchymal stem cells

AD-MSCs:

Adipose-derived mesenchymal stem cells

BM-MSCs:

Bone marrow-derived mesenchymal stem cells

DMEM-HG:

Dulbecco’s modified eagle’s medium–high glucose

TGF-β1:

Transforming growth factor-β1

ITS:

Insulin–transferrin–selenium

CM:

Chondrogenic medium (serum-free DMEM-HG supplemented with 10 ng/mL of TGF-β1, 50 nM ascorbate, 100 nM dexamethasone, and 5 μg/mL of ITS)

EM:

Expansion medium (DMEM-HG supplemented with 10 % fetal bovine serum)

SA–HA beads:

HA-containing SA beads

SA beads:

HA-free SA beads

References

  • Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222

    Article  PubMed  CAS  Google Scholar 

  • Chubinskaya S, Huch K, Schulze M, Otten L, Aydelotte MB, Cole AA (2001) Gene expression by human articular chondrocytes cultured in alginate beads. J Histochem Cytochem 49:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Chung CW, Kang JY, Yoon IS, Hwang HD, Balakrishnan P, Cho HJ, Chung KD, Kang DH, Kim DD (2011) Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf B 88:711–716

    Article  CAS  Google Scholar 

  • De Bie C (2007) Genzyme: 15 years of cell and gene therapy research. Regen Med 2:95–97

    Article  PubMed  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso ZC, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Diekman Brian O, Rowland Christopher R, Lennon Donald P, Caplan Arnold I, Guilak Farshid (2010) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A 16:523–533

  • Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F (2002) Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290:763–769

    Article  PubMed  CAS  Google Scholar 

  • Estes BT, Diekman BO, Gimble JM, Guilak F (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5:1294–1311

    Article  PubMed  CAS  Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    Article  PubMed  CAS  Google Scholar 

  • Gugala Z, Gogolewski S (2000) In vitro growth and activity of primary chondrocytes on a resorbable polylactide three dimensional scaffold. J Biomed Mater Res 49:183–191

    Article  PubMed  CAS  Google Scholar 

  • Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM (2004) Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41:389–399

    PubMed  CAS  Google Scholar 

  • Guo J, Jourdian GW, McCallum DK (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res 19:277–297

    Article  PubMed  CAS  Google Scholar 

  • Heng BC, Cao T, Lee EH (2004) Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22:1152–1167

    Article  PubMed  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Chung CW, Sung JH, Park BS, Choi JY, Lee SJ, Choi BC, Shim CK, Chung SJ, Kim DD (2009) Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. Int J Pharm 369:114–120

    Article  PubMed  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24

    Article  PubMed  CAS  Google Scholar 

  • Knudson CB (2003) Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C 69:174–196

    Article  CAS  Google Scholar 

  • Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB (2000) Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51:586–595

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X, Tian W (2005) Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 9:929–939

    Article  PubMed  CAS  Google Scholar 

  • Lindenhayn K, Perka C, Spitzer RS, Heilmann HH, Pommerening K, Mennicke J, Sittinger M (1999) Retention of hyaluronic acid in alginate beads: aspects for in vitro cartilage engineering. J Biomed Mater Res 44:149–155

    Article  PubMed  CAS  Google Scholar 

  • Lohmann CH, Schwartz Z, Niederauer GG, Carnes DL Jr, Dean DD, Boyan BD (2000) Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo. Biomaterials 21:49–61

    Article  PubMed  CAS  Google Scholar 

  • Ma HL, Hung SC, Lin SY, Chen YL, Lo WH (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64:273–281

    Article  PubMed  Google Scholar 

  • Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E (2001) Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res 57:268–278

    Article  PubMed  CAS  Google Scholar 

  • Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas IV, Spector M (1997) Canine chondrocytes seeded in type I and II collagen implants investigated in vitro. J Biomed Mater Res 38:95–104

    Article  PubMed  CAS  Google Scholar 

  • Ochi M, Uchio Y, Tobita M, Kuriwaka M (2001) Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs 25:172–179

    Article  PubMed  CAS  Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  PubMed  CAS  Google Scholar 

  • Slevin M, Krupinski J, Kumar S, Gaffney J (1998) Angiogenic oligosaccharides of hyaluronan induce protein tyrosine kinase activity in endothelial cells and activate a cytoplasm signal transduction pathway resulting in proliferation. Lab Invest 78:987–1003

    PubMed  CAS  Google Scholar 

  • Yoon IS, Chung CW, Sung JH, Cho HJ, Kim JS, Shim WS, Shim CK, Chung SJ, Kim DD (2011) Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. J Biosci Bioeng 112:402–408

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang JW, Futrell J, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, de Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2011-0030635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Soo Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DH., Kim, DD. & Yoon, IS. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in sodium alginate beads with or without hyaluronic acid. Journal of Pharmaceutical Investigation 43, 145–151 (2013). https://doi.org/10.1007/s40005-013-0059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-013-0059-2

Keywords

Navigation