Skip to main content
Log in

Drug stabilization and controlled release from AB3 type tetra block copolymer based polymersome

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

In order to increase the bioavailability of hydrophilic unstable drugs, polymersomes from AB3 type tetra block copolymers composing of poly(ethylene glycol)-b-(3) poly(lactic acid) (EO-3LA) as a water-soluble drug delivery carrier have been investigated due to its unique properties such as high stability and high water soluble drug loading efficiency. The sizes of EO-3LA polymersomes determined by dynamic light scattering were ranged in 190–220 nm with monodispersion. Its polymeric layer with 10–20 nm at the outershell was observed by field emission scanning electron microscopy. The polymersomes showed low critical aggregation concentrations (9.2–14.9 ug/ml). Anthocyanin was employed as a model drug for unstable drug in this study. The anthocyanin loading contents of EO-3LA polymersomes are depending on PLLA content in the polymers. The high loading contents (6.6–7.0 wt%) of the polymersomes are due to their tight and rigid polymeric membranes. The polymeric membrane in EO-3LA polymersomes contributed to improve drug stability on various pHs. Moreover, this property induced sustained anthocyanin release pattern from the polymersome. Therefore, the polymersome has potential as a drug carrier for water-soluble and unstable drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed F, Discher DE (2004) Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J Control Release 96:37–53

    Article  PubMed  CAS  Google Scholar 

  • Allen T, Cleland L (1980) Serum-induced leakage of liposome contents. Biochimt Biophys Acta (BBA) Biomembr 597:418–426

    Google Scholar 

  • Bangham A (1993) Liposomes: the Babraham connection. Chem Phys Lipids 64:275–285

    Article  PubMed  CAS  Google Scholar 

  • Bolotin EM, Cohen R, Bar LK, Emanuel N, Ninio S, Barenholz Y, Lasic DD (1994) Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res 4:455–479

    Article  Google Scholar 

  • Chiappetta DA, Sosnik A (2007) Poly (ethylene oxide)-poly (propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317

    Article  PubMed  CAS  Google Scholar 

  • Cullis P, Mayer L, Bally M, Madden T, Hope M (1989) Generating and loading of liposomal systems for drug-delivery applications. Adv Drug Deliv Rev 3:267–282

    Article  CAS  Google Scholar 

  • Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    Article  PubMed  CAS  Google Scholar 

  • Discher BM, Won YY, Ege DS, Lee J, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143

    Article  PubMed  CAS  Google Scholar 

  • Discher BM, Hammer DA, Bates FS, Discher DE (2000) Polymer vesicles in various media. Curr Opin Colloid Interface Sci 5:125–131

    Article  CAS  Google Scholar 

  • Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13:527–537

    Article  PubMed  CAS  Google Scholar 

  • Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JSW (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243–254

    PubMed  CAS  Google Scholar 

  • Jeong JH, Lim DW, Han DK, Park TG (2000) Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films. Colloids Surf B 18:371–379

    Article  CAS  Google Scholar 

  • Johnston APR, Such GK, Ng SL, Caruso F (2011) Challenges facing colloidal delivery systems: from synthesis to the clinic. Curr Opin Colloid Interface Sci 16:171–181

    Article  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2007) Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. J Drug Target 15:538–545

    Article  PubMed  CAS  Google Scholar 

  • Labhasetwar V, Song C, Levy RJ (1997) Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev 24:63–85

    Article  CAS  Google Scholar 

  • Lapidot T, Harel S, Akiri B, Granit R, Kanner J (1999) pH-dependent forms of red wine anthocyanins as antioxidants. J Agric Food Chem 47:67–70

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Zhou W, Meng F, Zhang D, Otto C, Feijen J (2010) Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. J Control Release 146:400–408

    Article  PubMed  CAS  Google Scholar 

  • Leson A, Filiz V, Förster S, Mayer C (2007) Water permeation through block-copolymer vesicle membranes. Chem Phys Lett 444:268–272

    Article  CAS  Google Scholar 

  • Li S, Byrne B, Welsh JE, Palmer AF (2007) Self assembled poly (butadiene)-b-poly (ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol Prog 23:278–285

    Article  PubMed  Google Scholar 

  • Lian T, Ho RJY (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:667–680

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Liu F, Song YK (1995) Recognition and clearance of liposomes containing phosphatidylserine are mediated by serum opsonin. Biochim Biophys Acta (BBA) Biomembr 1235:140–146

    Google Scholar 

  • Meng F, Hiemstra C, Engbers GHM, Feijen J (2003) Biodegradable polymersomes. Macromolecules 36:3004–3006

    Article  CAS  Google Scholar 

  • Moghimi S, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    Article  PubMed  CAS  Google Scholar 

  • Musumeci T, Ventura C, Giannone I, Ruozi B, Montenegro L, Pignatello R, Puglisi G (2006) PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm 325:172–179

    Article  PubMed  CAS  Google Scholar 

  • Na K, Park KM, Jo EA, Lee KS (2006) Self-organized pullulan/deoxycholic acid nanogels: physicochemical characterization and anti-cancer drug-releasing behavior. Biotechnol Bioprocess Eng 11:262–267

    Article  CAS  Google Scholar 

  • Nakaoka R, Tabata Y, Yamaoka T, Ikada Y (1997) Prolongation of the serum half-life period of superoxide dismutase by poly (ethylene glycol) modification. J Control Release 46:253–261

    Article  CAS  Google Scholar 

  • Orton CG (1995) Width of the therapeutic window: What is the optimal dose-per-fraction for high dose rate cervix cancer brachytherapy? Int J Radiat Oncol Biol Phys 31:1011

    Article  PubMed  CAS  Google Scholar 

  • Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V (2004) Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 93:1804–1814

    Article  PubMed  CAS  Google Scholar 

  • Paula S, Volkov A, Van Hoek A, Haines T, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348

    Article  PubMed  CAS  Google Scholar 

  • Ruan G, Feng SS (2003) Preparation and characterization of poly (lactic acid)-poly (ethylene glycol)-poly (lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24:5037–5044

    Article  PubMed  CAS  Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8:259–266

    Article  PubMed  CAS  Google Scholar 

  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev Columb 99:3181–3198

    Article  CAS  Google Scholar 

  • Westesen K, Bunjes H, Koch M (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48:223–236

    Article  CAS  Google Scholar 

  • Yin H, Kang SW, Bae YH (2009) Polymersome formation from AB2 type 3-miktoarm star copolymers. Macromolecules 42:7456–7464

    Article  CAS  Google Scholar 

  • Zheng XL, Kan B, Gou ML, Fu SZ, Zhang J, Men K, Chen LJ, Luo F, Zhao YL, Zhao X (2010) Preparation of MPEG-PLA nanoparticle for honokiol delivery in vitro. Int J Pharm 386:262–267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Next-Generation BioGreen 21 program (PJ007186201002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Na.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, D., Seo, S. & Na, K. Drug stabilization and controlled release from AB3 type tetra block copolymer based polymersome. Journal of Pharmaceutical Investigation 42, 101–108 (2012). https://doi.org/10.1007/s40005-012-0016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-012-0016-5

Keywords

Navigation