Skip to main content
Log in

Comparing the Efficiency of Sunflower, Marigold and Spinach Plants for Their Phytoextraction Ability of Zinc and Copper in Contaminated Soil

  • FULL-LENGTH RESEARCH ARTICLE
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Phytoextraction is a cost-effective technique to remediate contaminated soil. The efficiency of the phytoextraction process is limited by the slow growth, small biomass production of hyper-accumulator plants, and lower phytoavailability of contaminants in soil. The study is focused on comparing the efficiency of the three reported accumulator plants for phytoextraction of zinc (Zn) and copper (Cu) from contaminated soil and their effect on the bioavailability/toxicity of the elements after harvest. In a pot experiment, sunflower, marigold, and spinach were grown in Zn and Cu-contaminated soil. After harvest, the effect of phytoextraction on the distribution of Zn and Cu in various soil-solid phases was studied through a fractionation study as an indicator of bioavailability. The efficiency of phytoextraction was compared in terms of the metal uptake ability of the plants. The highest biomass yield of accumulator plants was obtained with marigold (30.1 g pot−1), followed by sunflower (16.3 g pot−1) and spinach (7.75 g pot−1). The concentrations of Zn and Cu in the three plants ranged from 58.0 to 222 mg kg−1 and 6.33 to 13.3 mg kg−1, respectively. In both the cases of Zn and Cu, sunflower was found superior to the other two plants in terms of phytoextraction of the metals from the contaminated soil. A fractionation study showed that in sunflower and marigold-grown soil, the carbonate bound fraction of Zn enriched water-soluble and exchangeable fraction of Zn, while in spinach-grown soil, the dissolved carbonate bound fraction of Zn enriched the organically bound fraction. Thus, it can be inferred that sunflowers and marigolds increased the bioavailability and toxicity of Zn and Cu more than that of spinach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achiba WB, Gabteni N, Lakhdar A, Du Laing GD, Verloo M, Jedidi N, Gallali T (2009) Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agric Ecosyst Environ 130:156–163. https://doi.org/10.1016/j.agee.2009.01.001

    Article  CAS  Google Scholar 

  2. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  CAS  PubMed  Google Scholar 

  3. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120. https://doi.org/10.1016/j.jenvman.2012.04.002

    Article  CAS  Google Scholar 

  4. Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54(5):464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  5. Bower CA, Reitemeier RF, Fireman M (1952) Exchangeable cation analysis of saline and alkali soils. Soil Sci 73(4):251–262. https://doi.org/10.1097/00010694-195204000-00001

    Article  ADS  CAS  Google Scholar 

  6. Brun LA, Le Corff J, Maillet J (2003) Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species. Environ Pollut 122(3):361–368. https://doi.org/10.1016/s0269-7491(02)00312-3

    Article  CAS  PubMed  Google Scholar 

  7. Chahal DS, Sharma BD, Singh PK (2005) Distribution of forms of zinc and their association with soil properties and uptake in different soil orders in semi-arid soils of Punjab, India. Commun Soil Sci Plant Anal 36(19–20):2857–2874. https://doi.org/10.1080/00103620500306031

    Article  CAS  Google Scholar 

  8. Chao TT (1984) Use of partial dissolution techniques in geochemical exploration. J Geochem Explor 20(2):101–135. https://doi.org/10.1016/0375-6742(84)90078-5

    Article  CAS  Google Scholar 

  9. Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2012) A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India. Environ Monit Assess 184(8):5139–5150. https://doi.org/10.1007/s10661-011-2328-8

    Article  CAS  PubMed  Google Scholar 

  10. Clevenger TE (1990) Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Pollut 50(3–4):241–254. https://doi.org/10.1007/BF00280626

    Article  ADS  CAS  Google Scholar 

  11. Datta SP, Subba Rao A, Ganeshamurthy AN (1997) Effect of electrolytes coupled with variable stirring on soil pH. J Indian Soc Soil Sci 45:185–187

    Google Scholar 

  12. de Melo WJ, de Stéfani AP, Peruca M, de Melo GM, Peruca de Melo V (2007) Nickel in a tropical soil treated with sewage sludge and cropped with maize in a long-term field study. Soil Biol Biochem 39(6):1341–1347. https://doi.org/10.1016/j.soilbio.2006.12.010

    Article  CAS  Google Scholar 

  13. Devi R, Behera B, Raza MB, Mangal V, Altaf MA, Kumar R, Kumar A, Tiwari RK, Lal MK, Singh B (2022) An insight into microbes mediated heavy metal detoxification in plants: a review. J Soil Sci Plant Nutr 22:914–936. https://doi.org/10.1007/s42729-021-00702-x

    Article  Google Scholar 

  14. European Union. 2002. Heavy Metals in Wastes. European Commission on Environment. http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf. Accessed on 3 Feb 2023

  15. Fitamo D, Itana F, Olsson M (2007) Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia. Environ Manag 39(2):178–193. https://doi.org/10.1007/s00267-006-0074-4

    Article  ADS  Google Scholar 

  16. Garbisu C, Alkorta I (2003) Basic concepts on heavy metals oil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  17. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18. https://doi.org/10.15666/aeer/0301_001018

    Article  Google Scholar 

  18. Golui D, Dali M, Singh R, Datta SP, Mandal J, Ray P et al (2022) Assessing soil degradation and risk in relation to metal pollution in Hindon river water irrigated soils of western Uttar Pradesh of India. Water Air Soil Pollut 233(5):168. https://doi.org/10.1007/s11270-022-05640-7

    Article  ADS  CAS  Google Scholar 

  19. Golui D, Datta SP, Dwivedi BS, Meena MC, Trivedi VK, Jaggi S et al (2021) Assessing geoavailability of zinc, copper, nickel, lead and cadmium in polluted soils using short sequential extraction scheme. Soil Sediment Contam An Int J 30(1):74–91. https://doi.org/10.1080/15320383.2020.1796924

    Article  CAS  Google Scholar 

  20. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi

    Google Scholar 

  21. Jalali M, Moharami S (2010) Redistribution of cadmium, copper, lead, nickel, and zinc among soil fractions in a contaminated calcareous soil after application of nitrogen fertilizers. J Plant Nutr Soil Sci 173(2):237–244. https://doi.org/10.1002/jpln.200800143

    Article  CAS  Google Scholar 

  22. Jośko I (2019) Copper and zinc fractionation in soils treated with CuO and ZnO nanoparticles: the effect of soil type and moisture content. Sci Total Environ 653:822–832. https://doi.org/10.1016/j.scitotenv.2018.11.014

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kabala C, Karczewska A, Szopka K, Wilk J (2011) Copper, zinc, and lead fractions in soils long-term irrigated with municipal waste water. Commun Soil Sci Plant Anal 42(8):905–919. https://doi.org/10.1080/00103624.2011.558960

    Article  CAS  Google Scholar 

  24. Kabata-Pendias A, Pendias H (1992) Trace elements in soil and plants, 2nd edn. CRS Press, Boca Raton, p 365

    Google Scholar 

  25. Kabata-Pendias A, Pendias H (2001) Trace elements in soil and plants, 3rd edn. CRS Press Inc., Boca Raton

    Google Scholar 

  26. Kabata-Pendias A, Pendias H (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  27. Khoshgoftarmanesh AH, Afyuni M, Norouzi M, Ghiasi S, Schulin R (2018) Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma 309:1–6. https://doi.org/10.1016/j.geoderma.2017.08.019

    Article  ADS  CAS  Google Scholar 

  28. Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified Plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810. https://doi.org/10.1016/j.biotechadv.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  29. Lajayer BA, Moghadam NK, Maghsordi MR, Gharbanpou M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484. https://doi.org/10.1007/s11356-019-04241-y

    Article  CAS  Google Scholar 

  30. Li L, Wu H, van Gestel CAM, Peijnenburg WJGM, Allen HE (2014) Soil acidification increases metal extractability and bioavailability in old orchard soils of North East Jiaodong Peninsula in China. Environ Pollut 188:144–152. https://doi.org/10.1016/j.envpol.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  31. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  32. Liu J, Duan CQ, Zhu YN, Zhang XH, Wang CX (2007) Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil. Environ Geol 52(8):1601–1606. https://doi.org/10.1007/s00254-006-0604-7

    Article  ADS  CAS  Google Scholar 

  33. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q et al (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  34. Majhi PK, Raza B, Behera PP, Singh SK, Shiv A, Mogali SC et al (2022) Future-proofing plants against climate change: a path to ensure sustainable food systems. In: Biodiversity, functional ecosystems and sustainable food production. Springer, Cham, pp 73–116

  35. Marschner H, Rimmington G (1988) Mineral nutrition of higher Plants. Plant Cell Environ 11:147–148

    Article  Google Scholar 

  36. McBride MB (1989) Reactions controlling heavy metal solubility in soils. Adv Soil Sci 10:1–56. https://doi.org/10.1007/978-1-4613-8847-0_1

    Article  CAS  Google Scholar 

  37. McLaren RG, Crawford DV (1973) Studies on soil copper. 1: the fractions of copper in soils. J Soil Sci 24:443–452. https://doi.org/10.1111/j.1365-2389.1973.tb00753.x

    Article  CAS  Google Scholar 

  38. Mench MJ, Fargues S (1994) Metal uptake by iron-efficient and inefficient oats. Plant Soil 165(2):227–233. https://doi.org/10.1007/BF00008066

    Article  CAS  Google Scholar 

  39. Milićević T, Relić D, Škrivanj S, Tešić Ž, Popović A (2017) Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion. Chemosphere 171:284–293. https://doi.org/10.1016/j.chemosphere.2016.12.090

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Napoli M, Cecchi S, Grassi C, Baldi A, Zanchi CA, Orlandini S (2019) Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere 219:122–129. https://doi.org/10.1016/j.chemosphere.2018.12.017

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Nogueira TAR, Melo WJ, Fonseca IM, Marcussi SA, Melo GMP, Marques MO (2010) Fractionation of Zn, Cd and Pb in a tropical soil after nine-year sewage sludge applications. Pedosphere 20(5):545–556. https://doi.org/10.1016/S1002-0160(10)60044-6

    Article  CAS  Google Scholar 

  42. PPCB (2010) Action plan for abatement of pollution in critically polluted area of Ludhiana city. Punjab Pollution Control Board. Vatavaran Bhawan, Nabha road, Patiala

  43. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

    Article  CAS  PubMed  Google Scholar 

  44. Rachman F, Supriatin S, Niswati A, Salam AK (2022) Lime-enhanced phytoextraction of copper and zinc by land spinach (Ipomoea reptans Poir.) from tropical soils contaminated with heavy metals. AIP Conf Proc 2563:040015. https://doi.org/10.1063/5.0103992

    Article  CAS  Google Scholar 

  45. Rahman MM, Asaduzzaman M, Naidu R (2013) Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. J Hazard Mater 262:1056–1063. https://doi.org/10.1016/j.jhazmat.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  46. Rattan RK, Datta SP, Sanyal SK (2009) Pollutants elements and human health. In: Narayanasamy G, Rattan RK, Ganeshamurthy AN (eds) Soil quality for human health, vol 27. Bulletin of the Indian Society of Soil Science, pp 103–123

  47. Samal SK, Datta SP, Dwivedi BS, Meena MC, Nogiya M, Choudhary M et al (2023) Phytoextraction of nickel, lead, and chromium from contaminated soil using sunflower, marigold, and spinach: comparison of efficiency and fractionation study. Environ Sci Pollut Res 30(17):50847–50863. https://doi.org/10.1007/s11356-023-25806-y

    Article  CAS  Google Scholar 

  48. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  49. Shuman LM, Wang J (1997) Effect of rice variety on zinc, cadmium, iron, and manganese content in rhizosphere and non-rhizosphere soil fractions. Commun Soil Sci Plant Anal 28(1–2):23–36. https://doi.org/10.1080/00103629709369769

    Article  CAS  Google Scholar 

  50. Sinhal VK, Srivastava A, Singh VP (2010) EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol 31(3):255–259

    CAS  PubMed  Google Scholar 

  51. Sung M, Lee CY, Lee SZ (2011) Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. J Hazard Mater 190(1–3):744–754. https://doi.org/10.1016/j.jhazmat.2011.03.113

    Article  CAS  PubMed  Google Scholar 

  52. Tao S, Liu WX, Chen YJ, Cao J, Li BG, Xu FL (2005) Fractionation and bioavailability of copper, cadmium and lead in rhizosphere soil. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the Rhizosphere. Elsevier, Amsterdam, pp 313–336

    Chapter  Google Scholar 

  53. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  54. Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10(3):268–292. https://doi.org/10.4067/S0718-95162010000100005

    Article  Google Scholar 

  55. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  ADS  CAS  Google Scholar 

  56. Wang G, Su MY, Chen YH, Lin FF, Luo D, Gao SF (2006) Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in Southeastern China. Environ Pollut 144(1):127–135. https://doi.org/10.1016/j.envpol.2005.12.023

    Article  CAS  PubMed  Google Scholar 

  57. Xu H, Wang HX, Liu H, Xiong ZT, Singh B (2007) Single and combined pollution of zinc and cadmium influence on root exudates and Zn, Cd forms in rye grass. Acta Sci Circum 28:2089–2095

    ADS  CAS  Google Scholar 

  58. Zheljazkov VD, Warman PR (2004) Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environ Pollut 131(2):187–195. https://doi.org/10.1016/j.envpol.2004.02.007,PMID15234085

    Article  CAS  PubMed  Google Scholar 

  59. Zhou LX, Wong JWC (2001) Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. J Environ Qual 30(3):878–883. https://doi.org/10.2134/jeq2001.303878x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support and infrastructure facility from Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SKS: Conceptualization, Methodology, Data curation, Formal analysis, Visualization, Writing—original draft, Investigation. SPD: Supervision, Resources, Validation, Writing—review and editing. DG: Methodology, Data curation, Writing—review and editing. BSD: Visualization, Formal analysis and editing. MCM: Data curation, Formal analysis and editing. MN: Review and editing. MC: Review and editing. MBR: Review and editing.

Corresponding author

Correspondence to Siba Prasad Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S.K., Datta, S.P., Golui, D. et al. Comparing the Efficiency of Sunflower, Marigold and Spinach Plants for Their Phytoextraction Ability of Zinc and Copper in Contaminated Soil. Agric Res (2024). https://doi.org/10.1007/s40003-024-00713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40003-024-00713-x

Keywords

Navigation