Skip to main content
Log in

Effect of Azospirillum zeae and Seed Priming with Zinc, Manganese and Auxin on Growth and Yield Parameters of Wheat, under Dryland Farming

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

In this study, field experiments with wheat (Triticum aestivum L.) were conducted consecutively for 2 years. The main objective was to determine (1) effect of seed priming with auxin (IAA), zinc (Zn) or manganese (Mn) on growth and yield parameters of wheat under dry land farming; (2) influence of on-farm priming with Azospirillum under field conditions. In this study, the response of dryland wheat yield to soaking seeds in water, 2 ppm IAA, 0.2% Mn solution and 0.2% aqueous solution of Zn with or without Azospirillum zeae inoculation was investigated under field condition. Total grain yield was significantly enhanced for water primed seeds i.e., 1273 kg ha−1 (6.8%) or seeds primed with IAA, as compared to 1191 kg ha−1 in plants from non-primed seeds. Difference in grain yield between priming with water and 2 ppm IAA was not significant when compared with 1372 kg ha−1 (15%) for seeds primed with 0.2% Mn solution and 1440 kg ha−1 (20%) for seeds primed with 0.2% Zn solution. Grain yield was significantly increased for plants inoculated with Azospirillum, 1411 kg ha−1 (8%) as compared to 1191 t ha−1 for non-Azospirillum-inoculated seeds. Yield parameters, i.e., tiller no. per m−2, grain number per spike, and 1000-grain weight, were all significantly affected by priming treatments and Azospirillum inoculation. Grains with the high nitrogen and phosphorous content were recorded for the treatment where seeds were primed with Zn and inoculated with Azospirillum. In the present study, inoculation of wheat seeds followed by priming is a significant approach to enhance grain yield and grain nutrients (N and P) content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Google Scholar 

  2. Ashraf M, Foolad MR (2005) Pre-sowing seed treatment-a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Google Scholar 

  3. Aymen EM, Kaouther Z, Fredj MB, Cherif H (2012) Seed priming for better growth and yield of safflower (Carthamus tinctorius) under saline condition. J Stress Physiol Biochem 8:135–143

    Google Scholar 

  4. Ayyaz K, Zaheer A, Rasul G, Mirza MS (2016) Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting Azospirilla from the rhizosphere of wheat. Braz J Microbiol 47:542–550

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum–plant relationship: physiological, molecular, agriculture, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    CAS  PubMed  Google Scholar 

  6. Beijerinck MW (1925) Über ein Spirillum, welches freien Stickstoff binden kann. Zentralbl Bakteriol Parasitenkd Infekt Abt. 63:353

    CAS  Google Scholar 

  7. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  8. Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortSci. 21:1105–1112

    Google Scholar 

  9. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  10. Carrillo-Reche J, Vallejo-Marín M, Quilliam RS (2018) Quantifying the potential of ‘on-farm’ seed priming to increase crop performance in developing countries. A meta-analysis. Agron Sustain Dev 38:64

    Google Scholar 

  11. Chapman HD, Pratt PF (1961) Ammonium vanadate–molybdate method for determination of phosphorus. In: Chapman HD, Pratt PF (eds) Methods of analysis for soils. Plants and Water University of California, Berkeley, pp 184–203

    Google Scholar 

  12. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–553

    CAS  PubMed  Google Scholar 

  13. Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    CAS  Google Scholar 

  14. Chen P, Bornhorst J, Aschner M (2018) Manganese metabolism in humans. Front Biosci (Landmark Ed). 23:1655–1679

    CAS  PubMed  Google Scholar 

  15. Cole DMA, Patrick JW (1998) Auxin control of photoassimilate transport to and within developing grains of wheat. Aust J Plant Physiol 25:69–77

    Google Scholar 

  16. Copur O, Demirel U, Karakus M (2010) Effects of several plant growth regulators on the yield and fiber quality of cotton (Gossypium hirusutum L.). Notulae Botanicae HortiAgrobotanici Cluj 38:104–110

    CAS  Google Scholar 

  17. Curtin D, Martin RJ, Scott CL (2008) Wheat (Triticum aestivum) response to micronutrients (Mn, Cu, Zn, B) in Canterbury, New Zealand. New Zealand J Crop Hortic Sci 36:169–181

    CAS  Google Scholar 

  18. de Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez JP, Prufert-Bebout L, Bashan Y (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization). Algal Res 15:179–186

    Google Scholar 

  19. de Souza R, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 38:401–419

    PubMed  PubMed Central  Google Scholar 

  20. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  21. Dotto L, Silva VN (2017) Beet seed priming with growth regulators. Semina: CienciasAgrarias 38:1785–1798

    Google Scholar 

  22. Farahmandfar E, Shirvan MB, Sooran SA, Hoseinzadeh D (2013) Effect of seed priming on morphological and physiological parameters of fenugreek seedlings under salt stress. Intl J Agri Crop Sci 5:811–815

    Google Scholar 

  23. Farooq M, Basra SMA, Wahid A (2006) Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul 49:285–294

    CAS  Google Scholar 

  24. Gao Y, Wu P, Zhao X, Wang Z (2014) Growth, yield, and nitrogen use in the wheat/maize intercropping system. Field Crops Res 167:19–30

    Google Scholar 

  25. Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    CAS  Google Scholar 

  26. Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65:51–60

    CAS  PubMed  Google Scholar 

  27. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling process. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  28. Gulluoglu L (2004) Determination of usage of plant growth regulators in soybean (Glycine max Merr) farming under Harran plain conditions. J Fac. Agri 8:17–23

    Google Scholar 

  29. Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition—a review. Am J Exp Agric 3:374–391

    CAS  Google Scholar 

  30. Harris D, Raghuwanshi BS, Gangwar JS, Singh SC, Joshi KD, Rashid A, Hollington PA (2001) Participatory evaluation by farmers of “on-farm” seed priming in wheat in India. Exp Agric 37:403–415

    Google Scholar 

  31. Harris D, Rashid A, Arif M, Yunas M (2005) Alleviating micronutrient deficiencies in alkaline soils of the North-West Frontier Province of Pakistan: Onfarm seed priming with zinc in wheat and chickpea. In: Andersen P, Tuladhar JK, Karki KB, Maskey SL (eds) Micronutrients in South and South East Asia, pp 143–151

  32. Harris D, Rashid A, Miraj G, Arif M, Shah H (2007) On-farm seed priming with zinc sulphate solution–a cost-effective way to increase the maize yields of resource-poor farmers. Field Crops Res. 10:119–127

    Google Scholar 

  33. Harris D, Rashid A, Miraj G, Arif M, Yunas M (2008) ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil 306:3–10

    CAS  Google Scholar 

  34. Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG (2010) Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J 64:740–752

    CAS  PubMed  Google Scholar 

  35. Jafarian T, Zarea MJ (2016) Hydrogen peroxide affects plant growth promoting effects of Azospirillum. Crop Sci Biotech 19:167–175

    Google Scholar 

  36. Jafri N, Mazid M, Mohammad F (2015) Responses of seed priming with gibberellic acid on yield and oil quality of sunflower (Helianthus annus L.). Indian J. Agric. Res. 49:235

    Google Scholar 

  37. Johnson SE, Lauren JG, Welch RM, Duxbury JM (2005) A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp Agric 41:427–448

    CAS  Google Scholar 

  38. Karimi N, Zarea MJ, Mehnaz S (2018) Endophytic Azospirillum for enhancement of growth and yield of wheat. Environ Sustain 1:149–158

    Google Scholar 

  39. Khalid BY, Malik NSA (1982) Pre-sowing soaking of wheat seeds in copper and manganese solutions. Commun Soil Sci Plant Analy 13:981–986

    CAS  Google Scholar 

  40. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    CAS  PubMed  Google Scholar 

  41. Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693

    CAS  PubMed  Google Scholar 

  42. Kopylov IP, Spyrydonov VH, Patyka VP (2009) Identification of Azospirillum genus bacteria isolated from the spring wheat root zone. Mikrobiol Z 71:13–19

    CAS  PubMed  Google Scholar 

  43. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    CAS  PubMed  Google Scholar 

  44. Lecube ML, Noriega GO, Santa Cruz DM, Tomaro ML, Batlle A, Balestrasse KB (2014) Indole acetic acid is responsible for protection against oxidative stress caused by drought in soybean plants: the role of heme oxygenase induction. Redox Rep 19:242–250

    PubMed  PubMed Central  Google Scholar 

  45. Liu DH, Jiang WS, Wuang C (1996) Effects of Zn2+ on root growth, cell division, and nucleoli of Allium cepa L. J Environ Sci 8:21–27

    CAS  Google Scholar 

  46. Ma T, Duan XH, Yang YY, Yao J, Gao TP (2017) Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum. Biol Plant 61:733–740

    CAS  Google Scholar 

  47. Ma HY, Zhao DD, Ning QR, Wei JP, Li Y, Wang MM, Liu XL, Jiang Ch-J (2018) A multi-year beneficial effect of seed priming with gibberellic acid-3 (GA3) on plant growth and production in a perennial grass. Leymus Chinensis Sci Rep 8:13214

    PubMed  Google Scholar 

  48. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marcar NE, Graham RD (1986) Effect of seed manganese content on the growth of wheat (Triticum aestivum) under manganese deficiency. Plant Soil 96:165–173

    CAS  Google Scholar 

  50. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    CAS  PubMed  Google Scholar 

  51. Mehnaz S, Weselowski B, Lazarovits G (2007) Azospirillum zeae sp. nov., diazotrophic bacteria isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57:2805–2809

    CAS  PubMed  Google Scholar 

  52. Mehnaz S, Weselowski B, Lazarovits G (2007) Azospirillum canadense nov., a nitrogen fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624

    CAS  PubMed  Google Scholar 

  53. Murungu FS, Nyamugafata P, Chiduza C et al (2003) Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.). Soil Tillage Res 74:161–168

    Google Scholar 

  54. Murungu FS, Chiduza C, Nyamugafata P, Clark LJ, Whalley WR (2004) Effect of on-farm seed priming on emergence, growth and yield of cotton and maize in a semi-arid area of Zimbabwe. Exp Agric 40:23

    Google Scholar 

  55. Naeem M, Bhatti I, Ahmad RH, Ashraf MY (2004) Effect of some growth hormones (GA3, IAA and Kinetin) on the morphology and early or delayed initiation of bud of lentil (Lens culinaris Medik). Pak J Bot 36:801–809

    Google Scholar 

  56. Naidoo G, Chirkoot HD (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environ Pollut 127:359–366

    CAS  PubMed  Google Scholar 

  57. Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    CAS  Google Scholar 

  58. Okon Y, Bloemberg GV, Lugtenberg BJJ (1998) Biotechnology of biofertilization and phytostimulation. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, New York, pp 327–349

    Google Scholar 

  59. Ousman A, Aune JB (2011) Effect of seed priming and micro-dosing of fertilizer on groundnut, sesame and cowpea in Western Sudan. Exp Agric 47(3):431–443

    Google Scholar 

  60. Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2(6):a001537

    PubMed  PubMed Central  Google Scholar 

  61. Padole VR (1979) Effect of presoaking seed treatment of wheat seed with chemicals and hormones on yield and uptake of NPK. J Maharashtra AgricUniv 4(1):85–88

    Google Scholar 

  62. Pallaoro DS et al (2016) Priming corn seeds with plant growth regulator. J Seed Sci 38:227–232

    Google Scholar 

  63. Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    PubMed  Google Scholar 

  65. Piccinin GG, Dan LGM, Braccini AL, Mariano DC, Okumura RS, Bazo G, Ricci TT (2011) Agronomic efficiency of Azospirillum brasilense in physiological parameters and yield components in wheat crop. J Agron 10:132–135

    Google Scholar 

  66. Piccinin GG, Braccini AL, Dan LGM, Scapim CA, Ricci TT, Bazo GL (2013) Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Ind Crop Prod 43:393–397

    Google Scholar 

  67. Rashid A (1996) Secondary and micronutrients. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, Pakistan, p 374

    Google Scholar 

  68. Reis S, Pavia I, Carvalho A, Moutinho-Pereira J, Correia C, Lima-Brito J (2018) Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield. Protoplasma 255:1179–1194

    CAS  PubMed  Google Scholar 

  69. Rengel Z, Graham RD (1995) Importance of seed Zn content for wheat grown on Zn-deficient soil I vegetative growth. Plant Soil 173:259–266

    CAS  Google Scholar 

  70. Rengel Z, Graham RD (1995) Importance of seed Zn content for wheat grown on Zn-deficient soil II grain yield. Plant Soil 173:267–274

    CAS  Google Scholar 

  71. Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757

    CAS  PubMed  Google Scholar 

  72. Salantur A, Ozturk R, Akten S (2006) Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria. Plant Soil Environ. 52:111–118

    Google Scholar 

  73. Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant environment interactions. Dekker, New York

    Google Scholar 

  74. Santa ORD, Hernadez RF, Alvarez GLM, Ronzelli P, Soccol CR (2004) Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Braz Arch Biol Technol 47:843–850

    Google Scholar 

  75. Saraswat VK, Bansal KN (1991) Methods of zinc application and its effect on yield and zinc content of rice (Oryza sativa) and wheat (Triticum vulgare). Madras Agric J 78(5–8):174–177

    Google Scholar 

  76. Schmidt SB, Jensen PE, Husted S (2016) Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci 21:622–632

    CAS  PubMed  Google Scholar 

  77. Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-amino levulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    CAS  Google Scholar 

  78. Singh B, Natesan SKA, Singh BK, Usha K (2003) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44

    Google Scholar 

  79. Singh SP, Keller B, Gruissem W, Bhullar NK (2017) Rice nicotianamine synthase 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet 130:283–292

    CAS  PubMed  Google Scholar 

  80. Slaton NA, Wilson-Jr CE, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93:152–157

    CAS  Google Scholar 

  81. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol 24:487–506

    CAS  Google Scholar 

  82. Stout PR, Arnon DI (1939) Experimental methods for the study of the role of copper, manganese, and zinc in the nutrition of higher plants. Am J Bot 26:144–149

    CAS  Google Scholar 

  83. Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial pant–microorganism interactions. Plant, Cell Environ 36:909–919

    CAS  Google Scholar 

  84. Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates, Inc., Publishers, Sunderland, MA, USA

  85. Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with the descriptions of a new genus, Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    CAS  PubMed  Google Scholar 

  86. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    CAS  PubMed  Google Scholar 

  87. Ulfat A, Majid SA, Hameed A (2017) Hormonal seed priming improves wheat (Triticum aestivum L.) field performance under drought and non-stress conditions. Pak J Bot 49:1239–1253

    CAS  Google Scholar 

  88. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  89. Van Schouwenberg J, Walinge I (1973) Methods of analysis for plant material. Agricultural University, Wageningen

    Google Scholar 

  90. Virk DS, Chakraborty M, Ghosh J, Harris D (2006) Participatory evaluation of horsegram (Macrotyloma uniflorum) varieties and their on-station responses to on-farm seed priming in eastern India. Exp Agric 42:411

    Google Scholar 

  91. Wei LX et al (2017) Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields. Field Crops Res. 203:86–93

    Google Scholar 

  92. White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crops Res 60:11–26

    Google Scholar 

  93. Yilmaz A, Ekiz H, Gultekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    CAS  Google Scholar 

  94. Zahid M, Abbasi MK, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207

  95. Zahid M, Abbasi MK, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize. Front Microbiol 6:207

    PubMed  PubMed Central  Google Scholar 

  96. Zarea MJ (2017) Azospirillum and wheat production. In: Kumar V, Kumar M, Sharma SH (eds) Probiotics in agroecosystem. Springer, Singapore, pp 329–348

    Google Scholar 

  97. Zarea MJ (2019) Applications of Beneficial Microbe in Arid and Semiarid Agroecosystem: IAA-Producing Bacteria. In: Kumar V, Prasad R, Kumar M, Choudhary D (eds) Microbiome in Plant Health and Disease. Springer, Singapore, pp 105–118

    Google Scholar 

  98. Zarea MJ (2019) Salt-tolerant microbes: isolation and adaptation. In: Varma A, Giri B (eds) Microorganisms in saline environments strategies and functions. Springer, Switzerland, pp 285–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Zarea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, N., Goltapeh, E.M., Amini, J. et al. Effect of Azospirillum zeae and Seed Priming with Zinc, Manganese and Auxin on Growth and Yield Parameters of Wheat, under Dryland Farming. Agric Res 10, 44–55 (2021). https://doi.org/10.1007/s40003-020-00480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-020-00480-5

Keywords

Navigation