Skip to main content
Log in

Evaluation of Genetic Diversity in Iranian Rice (Oryza Sativa) Cultivars for Resistance to Blast Disease Using Microsatellite (SSR) Markers

Agricultural Research Aims and scope Submit manuscript

Cite this article

Abstract

Rice plays an important role in feeding the world’s population, especially the people who live in developing countries. More than 90% of the world’s rice is produced and consumed in Asia. Blast disease caused by Magnaporthe Oryzae is one of the most important diseases of rice in the world. This study evaluated the power of 10 blast-specific SSR markers in the determination of genetic diversity among 30 cultivars of Indica rice. The phenotypic evaluation was also performed using M. Oryzae at the stage of three or four leaves. A total of 23 effective alleles with an average of 2.21 alleles per locus were found. A total of 28 alleles were also observed per locus with an average of 2.8. Also, the average of Polymorphic information content (PIC) for the studied markers was estimated as 0.42. RM204 and RM413 showed the highest (0.60) and the lowest (0.081) PIC, respectively. The UPGMA-based dendrogram obtained from the binary SSR data divided 30 studied genotypes into three groups. In phenotypic testing, the observed phenotypic similarities corresponded to those in UPGMA-based dendrogram with some intermixing. The phenotypic evaluation also divided the population into three groups. According to Student’s t tests for comparing the phenotypic and genotypic data, SSR markers RM277 and RM8225 were found to be linked to semi-susceptible and resistant phenotypes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36(1):181–186

    CAS  PubMed  Google Scholar 

  2. Ashkani S, Rafii MY, Sariah M, Siti NA, Rusli I, Harun AR, Latif MA (2011) Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res 10(3):1345–1355

    CAS  PubMed  Google Scholar 

  3. Ashkani S, Rafii MY, Rahim HA, Latif MA (2013) Genetic dissection of rice blast resistance by QTL mapping approach using an F 3 population. Mol Biol Rep 40(3):2503–2515

    CAS  PubMed  Google Scholar 

  4. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 16(6):886

    Google Scholar 

  5. Baraket G, Chatti K, Saddoud O, Abdelkarim AB, Mars M, Trifi M, Hannachi AS (2011) Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Rep 29(1):171–184

    Google Scholar 

  6. Berilus SR, Pattanayak A, Ram G (2013) Analysis of genetic variability in rice cultivars of Arunachal Pradesh (India) using microsatellite marker. Afr J Biotechnol 12(8):798–810

    CAS  Google Scholar 

  7. Cantrell RP, Reeves TG (2002) The cereal of the world’s poor takes center stage. Science 296(5565):53

    CAS  PubMed  Google Scholar 

  8. Chungada AS, Gokhale NB, Patil DM, Sawardekar SV, Patil PP (2016) Molecular screening of rice germplasm for biotic and abiotic stresses and their diversity study by using SSR markers. J Indian Soc Coast Agric Res 34(2):1

    Google Scholar 

  9. DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11(10):2013–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eizenga GC, Agrama HA, Lee FN, Yan W, Jia Y (2006) Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci 46(5):1870–1878

    CAS  Google Scholar 

  11. Fjellstrom R, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44(5):1790–1798

    CAS  Google Scholar 

  12. Fuentes JL, Correa-Victoria FJ, Escobar F, Prado G, Aricapa G, Duque MC, Tohme J (2008) Identification of microsatellite markers linked to the blast resistance gene Pi-1 (t) in rice. Euphytica 160(3):295–304

    CAS  Google Scholar 

  13. Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M (2015) Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 14(5):7773

    Google Scholar 

  14. Ganie SA, Borgohain MJ, Kritika K, Talukdar A, Pani DR, Mondal TK (2016) Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. Physiol Mol Biol Plants 22(1):107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Giarrocco LE, Marassi MA, Salerno GL (2007) Assessment of the genetic diversity in Argentine rice cultivars with SSR markers. Crop Sci 47(2):853–858

    CAS  Google Scholar 

  16. http://www.gramene.org

  17. Hannum S, Indriyani R (2018) Genetic diversity of local rice (Oryza sativa L.) from North Sumatera using simple sequence repeat (SSR). In: Journal of physics: conference series vol 1116, no 5. IOP Publishing, p. 052025

  18. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, Malek MA, Latif MA (2016) Introgression of blast resistance genes into the elite rice variety MR263 through marker-assisted backcrossing. J Sci Food Agric 4:1297–1305

    Google Scholar 

  19. Ho WC, Ko WH (1997) A simple method for obtaining single-spore isolates of fungi. Bot Bull Acad Sin 38:41–44

    Google Scholar 

  20. Khush GS (2005) what it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59(1):1–6

    CAS  PubMed  Google Scholar 

  21. Križman M, Jakše J, Baričevič D, Javornik B, Prošek M (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slov 87(2):427–433

    Google Scholar 

  22. Koide Y, Kobayashi N, Xu D, Fukuta Y (2009) Resistance genes and selection DNA markers for blast disease in rice (Oryza sativa L.). Jpn Agric Res Q JARQ. 43(4):255–280

    CAS  Google Scholar 

  23. Law JW-F, Ser H-L, Khan TM, Chuah L-H, Pusparajah P, Chan K-G, Goh B-H, Lee L-H (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol 8:3

    PubMed  PubMed Central  Google Scholar 

  24. Liu XQ, Wang L, Chen S, Lin F, Pan QH (2005) Genetic and physical mapping of Pi36 (t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genom 274(4):394–401

    CAS  Google Scholar 

  25. Liu Y, Zhu XY, Zhang S, Bernardo M, Edwards J, Galbraith DW, Leach J, Zhang G, Liu B, Leung H (2011) Dissecting quantitative resistance against blast disease using heterogeneous inbred family lines in rice. Theor Appl Genet 122(2):341–353

    PubMed  Google Scholar 

  26. Mahalingam A, Saraswathi R, Ramalingam J (2013) Simple sequence repeat (SSR) markers for assessing genetic diversity among the parental lines of hybrid rice (Oryza sativa L.). Afr J Biotechnol 12(33)

  27. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207

    CAS  PubMed  Google Scholar 

  28. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res 9(6):257–279

    CAS  PubMed  Google Scholar 

  29. Moumeni A, Leung H (2003) Genetic and molecular dissection of blast resistance in rice using RFLP, simple sequence repeats and defense-related candidate gene markers. Iran J Biotechnol 1(1):47–58

    CAS  Google Scholar 

  30. Moumeni A, Samadi BY, Wu J, Leung H (2003) Genetic diversity and relatedness of selected Iranian rice cultivars and disease resistance donors assayed by simple sequence repeats and candidate defense gene markers. Euphytica 131(3):275–284

    CAS  Google Scholar 

  31. Nachimuthu VV, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian BA, Ponniah G, Gunasekaran K, Swaminathan M, Suji KK, Sabariappan R (2015) Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza sativa. Rice 8(1):30

    PubMed  PubMed Central  Google Scholar 

  32. Nahavandi R, Hafezamini P, Shamsudin MN (2011) Genetic diversity of intensive cultured and wild tiger shrimp Penaeus monodon (Fabricius) in Malaysia using microsatellite markers. Afr J Biotechnol 10(69):15501–15508

    CAS  Google Scholar 

  33. Pan QH, Hu ZD, Takatoshi T, Wang L (2003) Fine mapping of the blast resistance gene Pi15, linked to Pii, on rice chromosome 9

  34. Rafii MY, Rahim HA, Ali NS, Mazlan N, Abdullah S (2015) Introgression of Pi-kh resistance gene into a Malaysian cultivar, MR264 using marker-assisted backcrossing (MABC). Int J Agric Biol 17:1172–1178

    Google Scholar 

  35. Rathour R, Chopra M, Sharma TR (2008) Development and validation of microsatellite markers linked to the rice blast resistance gene Pi-z of Fukunishiki and Zenith. Euphytica 163(2):275–282

    CAS  Google Scholar 

  36. Rohlf FJ (2000) NTSYS-PC: numerical taxonomy and multivariate analysis system, version 2.2. Exeter Software, Setauket, New York

    Google Scholar 

  37. Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC (2013) Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant 6(2):250–260

    CAS  PubMed  Google Scholar 

  38. Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N, Vongsaprom C, Toojinda T (2002) Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res 9(3):79–88

    CAS  PubMed  Google Scholar 

  39. Song JY, Lee GA, Choi YM, Lee S, Lee KB, Bae CH, Jung Y, Hyun DY, Park HJ, Lee MC (2014) Blast resistant genes distribution and resistance reaction to blast in Korean landraces of rice (Oryza sativa L). 한국자원식물학회지 27(6):687–700

    Google Scholar 

  40. Susan A, Yadav MK, Kar S, Aravindan S, Ngangkham U, Raghu S, Prabhukarthikeyan SR, Keerthana U, Mukherjee SC, Salam JL, Adak T (2019) Molecular identification of blast resistance genes in rice landraces from northeastern India. Plant Pathol 68(3):537–546

    CAS  Google Scholar 

  41. Talbot NJ (2003) on the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Ann Rev Microbiol 57(1):177–202

    CAS  Google Scholar 

  42. Wilson RA, Talbot NJ (2009) under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7(3):185

    CAS  PubMed  Google Scholar 

  43. Wong SC, Yiu PH, Bong ST, Lee HH, Neoh PN, Rajan A (2009) Analysis of Sarawak Bario rice diversity using microsatellite markers. Am J Agric Biol Sci 4:298–304

    Google Scholar 

  44. Yeh FC, Yang RC, Boyle TB, Ye ZH, Mao JX (1999) POPGENE version 1.32, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Alberta

    Google Scholar 

  45. Zhang YX, Wang Q, Jiang L, Liu LL, Wang BX, Shen YY, Cheng XN, Wan JM (2011) Fine mapping of qSTV11 KAS, a major QTL for rice stripe disease resistance. Theor Appl Genet 122(8):1591–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu M, Wang L, Pan Q (2004) Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology 94(5):515–519

    CAS  PubMed  Google Scholar 

  47. Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q (2012) The identification of Pi50 (t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124(7):1295–1304

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology, Islamic Azad University Science and Research Branch for the financial aid to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Farahzadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahzadi, F., Ebrahimi, A., Zarrinnia, V. et al. Evaluation of Genetic Diversity in Iranian Rice (Oryza Sativa) Cultivars for Resistance to Blast Disease Using Microsatellite (SSR) Markers. Agric Res 9, 460–468 (2020). https://doi.org/10.1007/s40003-019-00447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-019-00447-1

Keywords

Navigation