Skip to main content
Log in

Enhanced Techniques of Soil Washing for the Remediation of Heavy Metal-Contaminated Soils

  • Commentary
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Soil washing has been developed as one of the ex situ traditional remediation methods for heavy metal polluted soils. It has been found to be effective in metal extraction. However, due to the distribution and speciation in soils, most metal(loid)s are present in less mobile forms which limit the washing efficiency. Therefore, methods are studied to enhance the washing performance by increasing the metals solubility and availability. This paper introduces some currently used methods and technologies, including the optimization of washing variables, lowering soil pH, application of assisted amendments and integration of electro-kinetic remediation and ultrasonication to enhance the removal of metals. In addition, it also suggests some further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade MD, Prasher SO, Hendershot WH (2007) Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils. Environ Pollut 147:781–790

    Article  PubMed  CAS  Google Scholar 

  2. Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83:318–326

    Article  PubMed  CAS  Google Scholar 

  3. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  PubMed  CAS  Google Scholar 

  4. Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr–B[a]P-co-contaminated soil. Environ Sci Pollut Res 20(12):8955–8963

    Article  CAS  Google Scholar 

  5. Chung HI, Kamon M (2005) Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils. Eng Geol 77:233–242

    Article  Google Scholar 

  6. Dermont G, Bergeron M, Mercier G, Lafleche MR (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    Article  PubMed  CAS  Google Scholar 

  7. Ebrahimi M (2014) Effect of EDTA and DTPA on phytoremediation of Pb–Zn contaminated soils by Eucalyptus camaldulensis Dehnh and effect on treatment time. Desert 19(1):65–73

    Google Scholar 

  8. Egli T (1988) An aerobic breakdown of chelating agents used in household deter-gents. Microbiol Sci 5:36–41

    PubMed  CAS  Google Scholar 

  9. Engelhart DP, Wagner RJV, Meling A, Wodtke AM, Schäfer T (2015) Temperature programmed desorption of weakly bound adsorbates on Au(111). Surf Sci 650:11–16

    Article  CAS  Google Scholar 

  10. Han FX, Banin A (1997) Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. I: under saturated conditions. Water Air Soil Pollut 95:399–423

    Google Scholar 

  11. Han FX, Kingery WL, Selim HM, Gerald P (2000) Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Sci 165:260–268

    Article  CAS  Google Scholar 

  12. Han FX, Kingery WL, Selim HM, Gerard PD, Cox MS, Oldham JL (2004) Arsenic solubility and distribution in poultry waste and long-term amended soil. Sci Total Environ 320:51–61

    Article  PubMed  CAS  Google Scholar 

  13. Hea E, Im J, Yang K, Kim Y, Nam K (2015) Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere 119:1399–1405

    Article  CAS  Google Scholar 

  14. Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg 57:196–204

    Article  CAS  Google Scholar 

  15. Kim C, Ong SK (1999) Recycling of lead-contaminated EDTA wastewater. J Hazard Mater 69:273–286

    Article  PubMed  CAS  Google Scholar 

  16. Kim DH, Jeon CS, Baek K, Ko SH, Yang JS (2008) Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte. J Hazard Mater 161:565–569

    Article  PubMed  CAS  Google Scholar 

  17. Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray micro-fluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190

    Article  CAS  Google Scholar 

  18. Ko I, Chang YY, Lee CH, Kim KW (2005) Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J Hazard Mater 127:1–13

    Article  PubMed  CAS  Google Scholar 

  19. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  PubMed  CAS  Google Scholar 

  20. Lee M, Paik IS, Do W, Kim I, Lee Y, Lee S (2007) Soil washing of As contaminated stream sediments in the vicinity of an abandoned mine in Korea. Environ Geochem Heal 29:319–329

    Article  CAS  Google Scholar 

  21. Lestan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    Article  PubMed  CAS  Google Scholar 

  22. Lim TT, Tay JH, Wang JY (2004) Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J Environ Eng 130:59–66

    Article  CAS  Google Scholar 

  23. Liphadzi MS, Kirkham MB, Paulsen GM (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27(6):695–704

    Article  PubMed  CAS  Google Scholar 

  24. Li RS, Li LY (2000) Enhancement of electrokinetic extraction from lead-spiked soils. J Environ Eng 126:849–857

    Article  CAS  Google Scholar 

  25. Mao XY, Han FX, Shao XH, Guo K, McComb J, Njemanze S (2015) Electro-kinetic enhanced phytoremediation for the restoration of multi-metal(loid) contaminated soils. In: Daniels JA (ed) Advances in environmental research. Nova Science Publishers Inc., New York

    Google Scholar 

  26. Mao XY, Han FX, Shao XH, Guo K, McComb J, Arslan Z, Zhang ZY (2015) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotox Environ Safe 125:16–24

    Article  CAS  Google Scholar 

  27. Mason TJ, Collings A, Sumel A (2004) Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason Sonochem 11:205–210

    Article  PubMed  CAS  Google Scholar 

  28. Maturi K, Reddy KR (2008) Extraction of mixed contaminants from different soil types. Soil Sediment Contam 17:586–608

    Article  CAS  Google Scholar 

  29. Moreno-Jiménez E, Clemente R, Mestrot A, Meharg AA (2012) Arsenic and selenium mobilization from organic matter treated mine spoil with and without inorganic fertilization. Environ Pollut 173C(1):238–244

    Google Scholar 

  30. Ottosen LM, Pedersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochim Acta 52(10):3420–3426

    Article  CAS  Google Scholar 

  31. Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210

    Article  PubMed  CAS  Google Scholar 

  32. Polettini A, Pomi R, Rolle E (2007) The effect of operating variables on chelant assisted remediation of contaminated dredged sediment. Chemosphere 66:866–877

    Article  PubMed  CAS  Google Scholar 

  33. Shen Z, Chen X, Jia J, Qu L, Wang W (2007) Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environ Pollut 150:193–199

    Article  PubMed  CAS  Google Scholar 

  34. Shen Z, Zhang J, Qu L, Dong Z, Zheng S, Wang W (2009) A modified EK method with an I/I2 lixiviant assisted and approaching cathodes to remedy mercury contaminated field soils. Environ Geol 57(6):1399–1407

    Article  CAS  Google Scholar 

  35. Shrestha RA, Pham TD, Sillanpaa M (2010) Electro ultrasonic remediation of polycyclic aromatic hydrocarbons from contaminated soil. J Appl Electrochem 40:1407–1413

    Article  CAS  Google Scholar 

  36. Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120

    Article  PubMed  CAS  Google Scholar 

  37. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  38. Wu LH, Li Z, Akahane I, Liu L, Han CL, Makino TYK, Luo YM, Christie P (2012) Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by sedum plumbizincicola. Int J Phytoremediat 14(10):1024–1038

    Article  CAS  Google Scholar 

  39. Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29

    Article  PubMed  CAS  Google Scholar 

  40. Yeung AT, Gu YY (2012) Use of chelating agents in electrochemical remediation of contaminated soil. In: Daniel C, Tsang W, Irene M, Lo C, Surampalli RY (eds) Chelating agents for land decontamination technologies. American Society of Civil Engineers, Reston, pp 212–280

    Chapter  Google Scholar 

  41. Yin X, Chen JJ, Cai WM (2014) Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil. Environ Sci 35(8):3096–3101

    CAS  Google Scholar 

  42. Yu J, Yu YC, Fang L, Shu HL (2005) Effects of low molecular weight organic acids on the pH and the form of alum inum of forest soils. J Fujian Coll For 25(3):243–246

    Google Scholar 

  43. Zhang W, Huang H, Tan F, Wang H, Qiu R (2010) Influence of EDTA washing on the species and mobility of heavy metals residual in soils. J Hazard Mater 173:369–376

    Article  PubMed  CAS  Google Scholar 

  44. Zou Z, Qiu R, Zhang W, Dong HY, Zhao ZH, Zhang T, Wei XG, Cai XD (2009) The study of operating variables in soil washing with EDTA. Environ Pollut 157:229–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (2014B04814, 2015B05814, 2016B04314), Special Fund for Hydro-scientific Research in the Public Interest (201301017), Jiangsu Scientific Research Innovation Program of Ordinary Higher Education Graduate (SJZZ16_0083), Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX17_0129), and Fundamental Research Funds for the Central Universities (2017B755X14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Mao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Mao, X., Shao, X. et al. Enhanced Techniques of Soil Washing for the Remediation of Heavy Metal-Contaminated Soils. Agric Res 7, 99–104 (2018). https://doi.org/10.1007/s40003-018-0302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-018-0302-1

Keywords

Navigation