MTZ worldwide

, Volume 73, Issue 5, pp 52–59 | Cite as

Laser Ignition of Alternative Liquid Fuels

  • Josef Graf
  • Thomas Lauer
  • Bernhard Geringer
Research Ignition

Within a research project at the TU Vienna, the potential and mechanism of laser-induced ignition with respect to mixture inflammation and combustion were investigated compared to conventional spark ignition. A single-cylinder research engine with homogeneous charge was operated with bio-ethanol, bio ethyl-tertiary-butyl-ether (ETBE), butanol and blends of these fuels. Their potentials were compared with conventional gasoline. The intention of the investigations was to systematically describe the differences between spark and laser ignition with respect to the thermodynamics of the combustion process and the pollutant emissions.


Due to limited resources of fossil energy carriers and a steadily increasing global demand of energy, alternative fuels will become more and more important. This development is emphasised by the requirements of further reductions of emissions and greenhouse gases [1]. However, a thorough adaption of the engine design to the fuel properties is...



The authors would like to thank the Austrian Ministry of Traffic, Innovation and Technology (BMVIT) and the Austrian Research Funding Society (FFG) for their financial support. Further, the authors would like to thank the company GE Jenbacher for the project management.


  1. [1]
    Geringer, B.: Können alternative Kraftstoffe die Mobilität sicherstellen? Internationaler Kongress Motorische Verbrennung, München, March 2009Google Scholar
  2. [2]
    Hofmann, P.; Geringer, B.; Holub, F.; List, R.; Winter, S.; Urbanek, M.: Potenzial von Ethanol Blends in modernen Ottomotoren. 11. Tagung Der Arbeitsprozess des Verbrennungsmotors, Graz, September 2007Google Scholar
  3. [3]
    List, R.; Urbanek, M.; Hofmann, P.: The Effects of Bio-Ethanol Mixtures on the SI-Engine Operation. TAE 6th International Colloquium Fuels, Stuttgart/Ostfildern, January 2007Google Scholar
  4. [4]
    Geringer, B.; Graf, J.; Herdin, G.; Klausner, J.: Das Potenzial der Laserzündung bei verbrauchs- und emissionsreduzierenden homogenen Brennverfahren. 10. Tagung Der Arbeitsprozess des Verbrennungsmotors, Graz, September 2005Google Scholar
  5. [5]
    Feßler, M.; Wetzel, M.; Schenk, M.; Rottengruber, H.; Huhn, W.: Ermittlung von thermodynamischen Potenzialen alternativer Zündsysteme an einem strahlgeführtem Brennverfahren. 8. Internationales Symposium für Verbrennungsdiagnostik, Baden-Baden, June 2008Google Scholar
  6. [6]
    Kofler, H.: Development of a Laser Spark Plug and Comparative Testing. Dissertation, Institut für Photonik, TU Wien, 2009Google Scholar
  7. [7]
    Dedl, P.; Hofmann, P.; Geringer, B.; Karner, D.; Lohrmann, M.: Biogenous Gasoline — Suitability and Potential of Alcohols, Ether and BTL-Gasoline for Engine Operation and Performance. Fisita 2010, Budapest, June 2010Google Scholar
  8. [8]
    N. N.: Janaf Thermochemical Tables. National Bureau of Standards, Publication NSRDS-NBS37, 1971Google Scholar
  9. [9]
    Kee, R. J.; Rupley, F. M.; Miller, J. A.: The Chemkin Thermodynamic Data Base. Sandia Report Sand87-8215, Sandia National Laboratories, 1987Google Scholar
  10. [10] NasaThermoBuild, August 2011
  11. [11]
    VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC): VDI-Wärmeatlas — Berechnungsblätter für den Wärmeübergang. VDI-Verlag, 5. Auflage, 1988Google Scholar
  12. [12]
    Moss, J. T.; Berkowitz, M.; Oehlschlaeger, M. A.; Biet, J.; Warth, V.; Glaude, P. A.; Battin-Leclerc, F.: An Experimental and Kinetic Modelling Study of the Oxidation of the Four Isomers of Butanol. J. Phys. Chem., A 112 (2008) 10843–10855, 2008CrossRefGoogle Scholar
  13. [13]
    Glaude, P. A.; Battin-Leclerc, F.; Judenherc, B.; Warth, V.; Fournet, R.; Côme, G. M.; Scacchi, G.; Dagaut, P.; Cathonnet, P. A.: Experimental and Modelling Study of the Gas-Phase Oxidation of Methyl and Ethyl Tertiary Butyl Ethers. Combustion and Flame, Vol. 121, Issues 1–2, p. 345–355, 2000CrossRefGoogle Scholar
  14. [14]
    Broustail, G.;.Seers, P.; Halter, F.; Moréac, G.; Mounaim-Rousselle, C.: Experimental Determination of Laminar Burning Velocity for Butanol and Ethanol ISO-octane Blends. Fuel, Vol. 90, Issue 1, pp. 1–6, 2011CrossRefGoogle Scholar
  15. [15]
    Yahyaoui, M.; Djebaili-Chaumeix, N.; Dagaut, P.; Paillard, C.-E.: Ethyl Tertiary Butyl Ether Ignition and Combustion Using a Shock Tube and Spherical Bomb. Energy & Fuel, Vol. 22, pp. 3701–3708, 2008CrossRefGoogle Scholar
  16. [16]
    Lauer, T.; Heiss, M.; Fischer, S.; Klein, M.: Prediction of the Wall Film Formation and Performance of an Engine Operated with the Ethanol Blend E85. EAEC Congress, Valencia, 2011Google Scholar
  17. [17]
    Lauer, T.; Heiss, M.; Klein, M.: Impact of the Wall Film Formation on the Full Load Performance of an Engine Operated with the Ethanol Blend E85. SAE 2011-32-0535Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2012

Authors and Affiliations

  • Josef Graf
    • 1
  • Thomas Lauer
    • 1
  • Bernhard Geringer
    • 1
  1. 1.TU ViennaViennaAustria

Personalised recommendations