References
Hastie, T.; Tinshirani, R.; Friedman, J.: The Elements of Statistical Learning — Springer Series in Statistics. New York: Springer, 2001
Mitchell, T. M.: Machine learning. New York: McGraw-Hill, 1997
Breiman, L.; Friedman, J.; Olshen R. A.; Stone, C. J.: Classification and Regression Trees. Wadsworth, 1984
Breiman, L.: Random Forests. Machine Learning. In: Kluwer Academic Publishers (2001), No. 45, pp. 5–32
Zadeh, L. A.: Fuzzy Sets. In: Information Control (1965), No. 8, pp. 338–353
Kiendl, H.; Krabs, M.: Ein Verfahren zur Generierung regelbasierter Modelle für dynamische Systeme. In: at-Automatisierungstechnik (1989), No. 37, pp. 423–430
Krabs, M.: Das Rosa-Verfahren zur Modellierung dynamischer Systeme durch Regeln mit statistischer Relevanzbewertung. Düsseldorf: VDI Verlag, 1994, VDI-Fortschritt-Berichte, series 8, No. 404
Krone, A.; Kiendl, H.: Strategieelemente zur Beherrschung von Komplexität bei der rechnergestützten regelbasierten Modellierung. 5. Workshop Fuzzy Control, Proceedings, pp. 56–70
Krone, A.: Datenbasierte Generierung von relevanten Fuzzy-Regeln zur Modellierung von Prozesszusammenhängen und Bedienstrategien. Düsseldorf: VDI Verlag, 1999, VDI-Fortschritt-Berichte, Series 10, no. 615
Werbos, P. J.: Beyond regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University, 1974
Ripley, B.: Pattern Recognition and Neural Networks. Cambridge University Press, 1996
Vapnik, V.: The nature of statistical learning theory. Springer, 1995
Smola, A. J.; Schölkopf, B.: A Tutorial on Support Vector Regression. In: Statistics and Computing (2004), Vol. 14, pp. 199–222
Takeuchi, I.; Le, Q. V.; Sears, T. D.; Smola, A. J.: Nonparametric Quantile Estimation. In: Journal of Machine Learning Research (2006), No. 7
Martens, H.; Naes, T.: Multivariate Calibration. Wiley, 1989
Williams, C. K. I.; Barber, D.: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, No. 20, pp. 1342–1351, 1998
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, No. 2, pp. 1137–1143
Akaike, H.: A new look at the statistical model identification. In: IEEE Transactions on Automatic Control 19 (1974), No. 6, pp. 716–723
Schwarz, G.: Estimating the Dimension of a Model. In: The Annals of Statistics, March 1978, No. 6, pp. 461–464
[20] Wahba, G.; Craven, P.: Smoothing noisy data with spline functions. In: Numerische Mathematik, No. 31, pp. 377–403
Ye, J.: On Measuring and Correcting the Effects of Data Mining and Model Selection. In: Journal of American Statistical Association, March 1998, No. 93, pp. 120–131
Bäck, T.: Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996
Bäck, T.; Foussette C.; Krause P.: Contemporary Evolution Strategies. Berlin/Heidelberg: Springer, 2013
Bache, K.; Lichman, M.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2013
Hansen, N.; Auger, A.; Fink, S.; Ros, R.: Real-parameter black-box optimization benchmarking 2010: experimental setup. Research report RR-7215, Inria, 2010
Thanks
The authors are grateful to the Research Association for Automotive Engineers (FAT) and in particular the FAT Working Group 27, subdivision optimisation, for the promotion and support in the FAT research project “Development of methods for the reliable metamodeling of CAE simulation models” (No. 264).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bäck, T., Krause, P. & Foussette, C. Automatic Metamodelling of CAE Simulation Models. ATZ Worldw 117, 36–41 (2015). https://doi.org/10.1007/s38311-015-0015-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s38311-015-0015-z