Skip to main content
Log in

Automatische Metamodellierung von CAE-Simulationsmodellen

  • Forschung
  • Forschung
  • Published:
ATZ - Automobiltechnische Zeitschrift Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

BILD 1
BILD 2

Literaturhinweise

  1. Hastie, T.; Tinshirani, R.; Friedman, J.: The Elements of Statistical Learning — Springer Series in Statistics. New York: Springer, 2001

    Google Scholar 

  2. Mitchell, T. M.: Machine learning. New York: McGraw-Hill, 1997

    MATH  Google Scholar 

  3. Breiman, L.; Friedman, J.; Olshen R. A.; Stone, C. J.: Classification and Regression Trees. Wadsworth, 1984

    MATH  Google Scholar 

  4. Breiman, L.: Random Forests. Machine Learning. In: Kluwer Academic Publishers (2001) Nr. 45, S. 5–32

    MATH  Google Scholar 

  5. Zadeh, L. A.: Fuzzy Sets. In: Information Control (1965), Nr. 8, S. 338–353

    Google Scholar 

  6. Kiendl, H.; Krabs, M.: Ein Verfahren zur Generierung regelbasierter Modelle für dynamische Systeme. In: at-Automatisierungstechnik (1989), Nr. 37, S. 423–430

    Google Scholar 

  7. Krabs, M.: Das Rosa-Verfahren zur Modellierung dynamischer Systeme durch Regeln mit statistischer Relevanzbewertung. Düsseldorf: VDI Verlag, 1994, VDI-Fortschritt-Berichte, Reihe 8, Nr. 404

    Google Scholar 

  8. Krone, A.; Kiendl, H.: Strategieelemente zur Beherrschung von Komplexität bei der rechnergestützten regelbasierten Modellierung. 5. Workshop Fuzzy Control, Tagungsband, S. 56-70

  9. Krone, A.: Datenbasierte Generierung von relevanten Fuzzy-Regeln zur Modellierung von Prozesszusammenhängen und Bedienstrategien. Düsseldorf: VDI Verlag, 1999, VDI-Fortschritt-Berichte, Reihe 10, Nr. 615

    Google Scholar 

  10. Werbos, P. J.: Beyond regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University, 1975

    Google Scholar 

  11. Ripley, B.: Pattern Recognition and Neural Networks. Cambridge University Press, 1996

    Book  MATH  Google Scholar 

  12. Vapnik, V.: The nature of statistical learning theory. Springer, 1995

    Book  MATH  Google Scholar 

  13. Smola, A. J.; Schölkopf, B.: A Tutorial on Support Vector Regression. In: Statistics and Computing (2004), Band 14, S. 199–222

    Article  MathSciNet  Google Scholar 

  14. Takeuchi, I.; Le, Q. V.; Sears, T. D.; Smola, A. J.: Nonparametric Quantile Estimation. In: Journal of Machine Learning Research (2006), Nr. 7

    Google Scholar 

  15. Martens, H.; Naes, T.: Multivariate Calibration. Wiley, 1989

    MATH  Google Scholar 

  16. Williams, C. K. I.; Barber, D.: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, Nr. 20, S. 1342–1351

    Article  Google Scholar 

  17. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Nr. 2, S. 1137–1143

  18. Akaike, H.: A new look at the statistical model identification. In: IEEE Transactions on Automatic Control 19 (1974), Nr. 6, S. 716–723

    Google Scholar 

  19. Schwarz, G.: Estimating the Dimension of a Model. In: The Annals of Statistics, März 1978, Nr. 6, S. 461–464

    Google Scholar 

  20. Wahba, G.; Craven, P.: Smoothing noisy data with spline functions. In: Numerische Mathematik, Nr. 31, S. 377–403

  21. Ye, J.: On Measuring and Correcting the Effects of Data Mining and Model Selection. In: Journal of American Statistical Association, March 1998, Nr. 93, S. 120–131

    Article  MathSciNet  MATH  Google Scholar 

  22. Bäck, T.: Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996

  23. Bäck, T.; Foussette C.; Krause P.: Contemporary Evolution Strategies. Berlin/Heidelberg: Springer, 2013

    Book  MATH  Google Scholar 

  24. Bache, K.; Lichman, M.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2013

    Google Scholar 

  25. Hansen, N.; Auger, A.; Fink, S.; Ros, R.: Real-parameter black-box optimization benchmarking 2010: experimental setup. Research report RR-7215, Inria, 2010

    Google Scholar 

Download references

Danke

Die Autoren bedanken sich bei der Forschungsvereinigung Automobiltechnik e. V. (FAT) und insbesondere bei dem FAT-Arbeitskreis 27, Unterabteilung Optimierung, für die Förderung und Unterstützung bei dem FAT-Forschungsprojekt „Entwicklung von Methoden zur zuverlässigen Metamodellierung von CAE Simulations-Modellen“ (Nr. 264).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäck, T., Krause, P. & Foussette, C. Automatische Metamodellierung von CAE-Simulationsmodellen. ATZ Automobiltech Z 117, 64–69 (2015). https://doi.org/10.1007/s35148-015-0032-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s35148-015-0032-7

Navigation