Advertisement

DNP - Der Neurologe & Psychiater

, Volume 19, Issue 2, pp 39–47 | Cite as

Neuromuskuläre Erkrankungen

Ventilationsstörungen erkennen und richtig handeln

  • Stephan Wenninger
  • Benedikt Schoser
Fortbildung
  • 47 Downloads

Neuromuskuläre Erkrankungen (NME) können mit einer Ventilationsstörung assoziiert sein, die unbehandelt zu einer deutlich reduzierten Lebensqualität führen und auch Grund für die reduzierte Lebenserwartung sein kann. In der klinischen Praxis ist es daher entscheidend, die Häufigkeit einer Beteiligung der Atemmuskulatur sowie die zu erwartende Progression einer respiratorischen Insuffizienz zu kennen. Ein Überblick über NME mit Ventilationsstörungen im Kontext der aktuellen Studienlage und Handlungsempfehlungen.

Literatur

  1. 1.
    Urfy MZ, Suarez JI. Breathing and the nervous system. Handb Clin Neurol 2014; 119:241–50CrossRefGoogle Scholar
  2. 2.
    Boentert M, Wenninger S, Sansone VA. Respiratory involvement in neuromuscular disorders. Curr Opin Neurol 2017; 30(5):529–37CrossRefGoogle Scholar
  3. 3.
    Oczenski W. Atmen — Atemhilfen: Atemphysiologie und Beatmungstechnik: Thieme; 2017Google Scholar
  4. 4.
    Fromageot C, Lofaso F, Annane D, Falaize L, Lejaille M, Clair B et al. Supine fall in lung volumes in the assessment of diaphragmatic weakness in neuromuscular disorders. Arch Phys Med Rehabil 2001; 82(1):123–8CrossRefGoogle Scholar
  5. 5.
    Kabitz HJ, Atemwegsliga D. Messung der Atemmuskelfunktion: Empfehlungen der Deutschen Atemwegsliga e.V. in der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP): Dustri-Verlag Feistle; 2014Google Scholar
  6. 6.
    Schoser B, Fong E, Geberhiwot T, Hughes D, Kissel JT, Madathil SC, et al. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet J Rare Dis 2017; 12(1):52CrossRefGoogle Scholar
  7. 7.
    Cho HE, Lee JW, Kang SW, Choi WA, Oh H, Lee KC. Comparison of Pulmonary Functions at Onset of Ventilatory Insufficiency in Patients With Amyotrophic Lateral Sclerosis, Duchenne Muscular Dystrophy, and Myotonic Muscular Dystrophy. Ann Rehabil Med 2016; 40(1):74–80CrossRefGoogle Scholar
  8. 8.
    Welch JF, Mildren RL, Zaback M, Archiza B, Allen GP, Sheel AW. Reliability of the diaphragmatic compound muscle action potential evoked by cervical magnetic stimulation and recorded via chest wall surface EMG. Respir Physiol Neurobiol 2017; 243:101–6CrossRefGoogle Scholar
  9. 9.
    Pfeifer M. Respiratory pump failure. Clinical symptoms, diagnostics and therapy. Internist (Berl) 2012; 53(5):534–44CrossRefGoogle Scholar
  10. 10.
    Man WD, Moxham J, Polkey MI. Magnetic stimulation for the measurement of respiratory and skeletal muscle function. Eur Respir J 2004; 24(5):846–60CrossRefGoogle Scholar
  11. 11.
    Ansari A, Hahn K. Ableitung motorisch evozierter Potenziale von der Zwerchfellmuskulatur nach transkranieller und zervikaler Magnetstimulation. Klin Neurophysiol 2017; 48(1):34–9CrossRefGoogle Scholar
  12. 12.
    Topeli A, Laghi F, Tobin MJ. Can diaphragmatic contractility be assessed by twitch airway pressures in patients with chronic obstructive pulmonary disease? Am J Respir Crit Care Med 1999; 160(4):1369–74CrossRefGoogle Scholar
  13. 13.
    Santos DB, Desmarais G, Falaize L, Ogna A, Cognet S, Louis B et al. Twitch mouth pressure for detecting respiratory muscle weakness in suspicion of neuromuscular disorder. Neuromuscul Disord 2017; 27(6):518–25CrossRefGoogle Scholar
  14. 14.
    Francis CA, Hoffer JA, Reynolds S. Ultrasonographic Evaluation of Diaphragm Thickness During Mechanical Ventilation in Intensive Care Patients. Am J Crit Care 2016; 25(1):e1–8CrossRefGoogle Scholar
  15. 15.
    Noda Y, Sekiguchi K, Kohara N, Kanda F, Toda T. Ultrasonographic diaphragm thickness correlates with compound muscle action potential amplitude and forced vital capacity. Muscle Nerve 2016; 53(4):522–7CrossRefGoogle Scholar
  16. 16.
    Baumann F, Henderson RD, Morrison SC, Brown M, Hutchinson N, Douglas JA et al. Use of respiratory function tests to predict survival in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010; 11(1-2):194–202CrossRefGoogle Scholar
  17. 17.
    Lyall RA, Donaldson N, Polkey MI, Leigh PN, Moxham J. Respiratory muscle strength and ventilatory failure in amyotrophic lateral sclerosis. Brain 2001; 124(Pt 10):2000–13CrossRefGoogle Scholar
  18. 18.
    Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr. et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 2005; 28(4):499–521CrossRefGoogle Scholar
  19. 19.
    Windisch W, Dreher M, Geiseler J, Siemon K, Brambring J, Dellweg D, et al. Guidelines for Non-Invasive and Invasive Home Mechanical Ventilation for Treatment of Chronic Respiratory Failure - Update 2017. Pneumologie 2017; 71(11):722–95CrossRefGoogle Scholar
  20. 20.
    Turner DA, Ofori-Amanfo G, Williford WL, Cheifetz IM. Lung protective ventilation: a summary of the current evidence from the 2012 American Association for Respiratory Care International Congress. Expert Rev Respir Med 2013; 7(3):209–12CrossRefGoogle Scholar
  21. 21.
    Luo F, Annane D, Orlikowski D, He L, Yang M, Zhou M et al. Invasive versus non-invasive ventilation for acute respiratory failure in neuromuscular disease and chest wall disorders. The Cochrane database of systematic reviews 2017; 12:CD008380PubMedGoogle Scholar
  22. 22.
    Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W et al. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2009; 73(15):1218–26CrossRefGoogle Scholar
  23. 23.
    Radunovic A, Annane D, Rafiq MK, Brassington R, Mustfa N. Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2017; 10:CD004427PubMedGoogle Scholar
  24. 24.
    Boentert M, Brenscheidt I, Glatz C, Young P. Effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with amyotrophic lateral sclerosis. Journal Neurology 2015; 262(9):2073–82CrossRefGoogle Scholar
  25. 25.
    Vrijsen B, Buyse B, Belge C, Robberecht W, Van Damme P, Decramer M et al. Noninvasive ventilation improves sleep in amyotrophic lateral sclerosis: a prospective polysomnographic study. J Clin Sleep Med 2015; 11(5):559–66PubMedPubMedCentralGoogle Scholar
  26. 26.
    Burakgazi AZ, Hoke A. Respiratory muscle weakness in peripheral neuropathies. Journal of the peripheral nervous system (JPNS) 2010; 15(4):307–13CrossRefGoogle Scholar
  27. 27.
    van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 2014; 10(8):469–82CrossRefGoogle Scholar
  28. 28.
    Fletcher DD, Lawn ND, Wolter TD, Wijdicks EF. Long-term outcome in patients with Guillain-Barre syndrome requiring mechanical ventilation. Neurology. 2000; 54(12):2311–5CrossRefGoogle Scholar
  29. 29.
    Ropper AH. Severe acute Guillain-Barre syndrome. Neurology 1986; 36(3):429–32CrossRefGoogle Scholar
  30. 30.
    Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. New Engl J Med 2014; 370(17):1626–35CrossRefGoogle Scholar
  31. 31.
    Senger D, Erbguth F. Critical-illness-Myopathie und -Polyneuropathie. Medizinische Klinik - Intensivmedizin und Notfallmedizin. 2017; 112(7):589–96CrossRefGoogle Scholar
  32. 32.
    Agarwal R, Reddy C, Gupta D. Noninvasive ventilation in acute neuromuscular respiratory failure due to myasthenic crisis: case report and review of literature. Emerg Med J 2006; 23(1):e6CrossRefGoogle Scholar
  33. 33.
    Jeffery IA, Karim S. Botulism. StatPearls. Treasure Island (FL)2017Google Scholar
  34. 34.
    Shoesmith CL, Findlater K, Rowe A, Strong MJ. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurology, Neurosurgery and Psychiatry 2007; 78(6):629–31CrossRefGoogle Scholar
  35. 35.
    Czaplinski A, Yen AA, Appel SH. Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J Neurology, Neurosurgery and Psychiatry 2006; 77(3):390–2CrossRefGoogle Scholar
  36. 36.
    Velasco R, Salachas F, Munerati E, Le Forestier N, Pradat PF, Lacomblez L et al. Nocturnal oxymetry in patients with amyotrophic lateral sclerosis: role in predicting survival. Revue neurologique 2002; 158(5 Pt 1):575–8PubMedGoogle Scholar
  37. 37.
    Georges M, Nguyen-Baranoff D, Griffon L, Foignot C, Bonniaud P, Camus P et al. Usefulness of transcutaneous PCO2 to assess nocturnal hypoventilation in restrictive lung disorders. Respirology. 2016; 21(7):1300–6CrossRefGoogle Scholar
  38. 38.
    Pinto S, Alves P, Pimentel B, Swash M, de Carvalho M. Ultrasound for assessment of diaphragm in ALS. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 2016; 127(1):892–7CrossRefGoogle Scholar
  39. 39.
    Pinto S, Alves P, Swash M, de Carvalho M. Phrenic nerve stimulation is more sensitive than ultrasound measurement of diaphragm thickness in assessing early ALS progression. Neurophysiol Clin 2017; 47(1):69–73CrossRefGoogle Scholar
  40. 40.
    Pinto S, Pinto A, de Carvalho M. Phrenic nerve studies predict survival in amyotrophic lateral sclerosis. Clin Neurophysiol. 2012; 123(12):2454–9CrossRefGoogle Scholar
  41. 41.
    Jacobs TL, Brown DL, Baek J, Migda EM, Funckes T, Gruis KL. Trial of early noninvasive ventilation for ALS: A pilot placebo-controlled study. Neurology 2016; 87(18):1878–83CrossRefGoogle Scholar
  42. 42.
    Tagami M, Kimura F, Nakajima H, Ishida S, Fujiwara S, Doi Y, et al. Tracheostomy and invasive ventilation in Japanese ALS patients: decision-making and survival analysis: 1990-2010. J Neurol Sci 2014; 344(1-2):158–64CrossRefGoogle Scholar
  43. 43.
    Huttmann SE, Windisch W, Storre JH. Invasive home mechanical ventilation: living conditions and health-related quality of life. Respiration 2015; 89(4):312–21CrossRefGoogle Scholar
  44. 44.
    Prior TW, Finanger E. Spinal Muscular Atrophy. In: Adam MP, Ardinger HH, Pagon RA,Wallace SE, Bean LJH, Mefford HC et al., editors. GeneReviews((R)). Seattle (WA)1993.Google Scholar
  45. 45.
    Paton DM. Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today (Barc). 2017; 53(6):327–37CrossRefGoogle Scholar
  46. 46.
    Schuller A, Wenninger S, Strigl-Pill N, Schoser B. Toward deconstructing the phenotype of late-onset Pompe disease. American J Medical Genetics Part C, Seminars in medical genetics 2012; 160C(1):80–8CrossRefGoogle Scholar
  47. 47.
    Wenninger S, Schoser B. Behandelbare neuromuskuläre Erkrankungen als wichtige Differentialdiagnose der chronisch-progredienten Dyspnoe im höheren Erwachsenenalter. Pneumologe 2015: 5:1–4Google Scholar
  48. 48.
    Hagemans ML, Hop WJ, Van Doorn PA, Reuser AJ, Van der Ploeg AT. Course of disability and respiratory function in untreated late-onset Pompe disease. Neurology 2006; 66(4):581–3CrossRefGoogle Scholar
  49. 49.
    Boentert M, Karabul N, Wenninger S, Stubbe-Drager B, Mengel E, Schoser B et al. Sleep-related symptoms and sleep-disordered breathing in adult Pompe disease. European J Neurology 2015; 22(2):369–76, e27CrossRefGoogle Scholar
  50. 50.
    Boentert M, Prigent H, Vardi K, Jones HN, Mellies U, Simonds AK et al. Practical Recommendations for Diagnosis and Management of Respiratory Muscle Weakness in Late-Onset Pompe Disease. Int J Mol Sci. 2016; 17(10)CrossRefGoogle Scholar
  51. 51.
    Fuller DD, ElMallah MK, Smith BK, Corti M, Lawson LA, Falk DJ et al. The respiratory neuromuscular system in Pompe disease. Respir Physiol Neurobiol 2013; 189(2):241–9CrossRefGoogle Scholar
  52. 52.
    Turner SM, Hoyt AK, ElMallah MK, Falk DJ, Byrne BJ, Fuller DD. Neuropathology in respiratory-related motoneurons in young Pompe (Gaa(-/-)) mice. Respir Physiol Neurobiol 2016; 227:48–55CrossRefGoogle Scholar
  53. 53.
    Sansone VA, Gagnon C, participants of the 207th EW. 207th ENMC Workshop on chronic respiratory insufficiency in myotonic dystrophies: management and implications for research, 27-29 June 2014, Naarden, The Netherlands. Neuromuscul Disord 2015; 25(5):432–42CrossRefGoogle Scholar
  54. 54.
    Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. The Cochrane database of systematic reviews 2016(5):CD003725Google Scholar
  55. 55.
    Sardone V, Zhou H, Muntoni F, Ferlini A, Falzarano MS. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules 2017; 22(4)CrossRefGoogle Scholar
  56. 56.
    Cotta A, Carvalho E, da-Cunha-Junior AL, Paim JF, Navarro MM, Valicek J et al. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? Arquivos de neuro-psiquiatria. 2014; 72(9):721–34CrossRefGoogle Scholar
  57. 57.
    Della Marca G, Frusciante R, Dittoni S, Vollono C, Buccarella C, Iannaccone E et al. Sleep disordered breathing in facioscapulohumeral muscular dystrophy. J Neurological Sciences 2009; 285(1-2):54–8CrossRefGoogle Scholar
  58. 58.
    Moreira S, Wood L, Smith D, Marini-Bettolo C, Guglieri M, McMacken G et al. Respiratory involvement in ambulant and non-ambulant patients with facioscapulohumeral muscular dystrophy. J Neurology 2017; 264(6):1271–80CrossRefGoogle Scholar
  59. 59.
    Gaig C, Graus F, Compta Y, Hogl B, Bataller L, Bruggemann N et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017; 88(18):1736–43CrossRefGoogle Scholar
  60. 60.
    Gelpi E, Hoftberger R, Graus F, Ling H, Holton JL, Dawson T, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta neuropathologica 2016; 132(4):531–43CrossRefGoogle Scholar
  61. 61.
    Wenninger S. Expanding the Clinical Spectrum of IgLON5-Syndrome. J Neuromuscul Dis 2017; 4(4):337–9CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Friedrich-Baur-Institut an der Neurologischen Klinik des Klinikums der Universität München, Interdisziplinäres Zentrum für Neuromuskuläre ErkrankungenMünchenDeutschland

Personalised recommendations