Advertisement

DNP - Der Neurologe & Psychiater

, Volume 19, Issue 2, pp 28–34 | Cite as

Prävention

N-Acetylcystein: neue Option zur frühen Bekämpfung von Schizophrenie

  • Sven Wasserthal
  • Christian Kloss
  • René Hurlemann
  • Johannes Schultz
Fortbildung
  • 121 Downloads

Symptomfreiheit sowie Erhalt der Selbstbestimmung über die eigene Lebensführung gehören zu den Zielen der Schizophreniebehandlung. Die erreichten Genesungsraten sind jedoch eher moderat, was sich auch in den langfristigen Kosten für das Gesundheitssystem widerspiegelt. Die Prävention der Schizophrenie, mit dem Ziel attenuierte psychotische Symptome zu diagnostizieren, bevor eine manifeste Schizophrenie auftritt, steht daher im Fokus von Forschung und Praxis. Dazu gehören auch früh einsetzbare moderne Behandlungsmethoden mit geringem Nebenwirkungsprofil wie N-Acetylcystein.

Literatur

  1. 1.
    Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, „just the facts“ what we know in 2008. 2. Epidemiology and etiology. Schizophr Res. 2008;102:1–18.CrossRefGoogle Scholar
  2. 2.
    Jääskeläinen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, et al. A systematic review and meta-analysis of recovery in schizophrenia. Schizophrenia Bulletin. 2013;39:1296–1306.CrossRefGoogle Scholar
  3. 3.
    World Health Organisation. The Global burden of disease: 2004 update. Geneva, Switzerland: World Health Organization; 2004.Google Scholar
  4. 4.
    Frey S. The economic burden of schizophrenia in Germany: A population-based retrospective cohort study using genetic matching. European Psychiatry. 2014;29:479–489.CrossRefGoogle Scholar
  5. 5.
    Campion J, Bhui K, Bhugra D. European Psychiatric Association (EPA) guidance on prevention of mental disorders. European Psychiatry. 2012;27:68–80.CrossRefGoogle Scholar
  6. 6.
    Seidman LJ, Nordentoft M. New Targets for Prevention of Schizophrenia: Is It Time for Interventions in the Premorbid Phase? Schizophrenia Bulletin. 2015;41:795–800.CrossRefGoogle Scholar
  7. 7.
    American Psychiatric Association. Diagnostisches und Statistisches Manual Psychischer Störungen - DSM-5; 2015.Google Scholar
  8. 8.
    Ruhrmann S, Klosterkötter J, Bodatsch M, Bechdolf A, Schimmelmann BG, Nikolaides A, et al. Pharmacological Prevention and Treatment in Clinical At-Risk States for Psychosis. Current Pharmaceutical Design. 2012;18:550–557.CrossRefGoogle Scholar
  9. 9.
    Schmidt SJ, Schultze-Lutter F, Schimmelmann BG, Maric NP, Salokangas RKR, Riecher-Rössler A, et al. EPA guidance on the early intervention in clinical high risk states of psychoses. European Psychiatry. 2015;30:388–404.CrossRefGoogle Scholar
  10. 10.
    DGPPN. S3 Praxisleitlinien in Psychiatrie und Psychotherapie. Darmstadt: Steinkopff; 2006.Google Scholar
  11. 11.
    National Institute for Health Care Excellence. Psychosis and Schizophrenia in adults. The NICE guideline on treatment and management; 2014.Google Scholar
  12. 12.
    Leucht S, Barnes TRE, Kissling W, Engel RR, Correll C, Kane JM. Relapse prevention in schizophrenia with new-generation antipsychotics: A systematic review and exploratory meta-analysis of randomized, controlled trials. Am J Psychiatry. 2003;160:1209–1222.CrossRefGoogle Scholar
  13. 13.
    Sommer IEC, Slotema CW, Daskalakis ZJ, Derks EM, Blom JD, van der Gaag M. The treatment of hallucinations in schizophrenia spectrum disorders. Schizophrenia Bulletin. 2012;38:704–714.CrossRefGoogle Scholar
  14. 14.
    Li P, L. Snyder G, E. Vanover K. Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Present and Future. CTMC. 2016;16:3385–3403.CrossRefGoogle Scholar
  15. 15.
    Nowak I, Sabariego C, Œwitaj P, Anczewska M. Disability and recovery in schizophrenia: A systematic review of cognitive behavioral therapy interventions. BMC Psychiatry. 2016;16:1–15.CrossRefGoogle Scholar
  16. 16.
    Kirschner M, Aleman A, Kaiser S. Secondary negative symptoms - A review of mechanisms, assessment and treatment. Schizophr Res. 2017;186:29–38.CrossRefGoogle Scholar
  17. 17.
    Remington G, Agid O, Foussias G, Fervaha G, Takeuchi H, Lee J, Hahn M. What does schizophrenia teach us about antipsychotics? Can J Psychiatry. 2015;60:S14–8.CrossRefGoogle Scholar
  18. 18.
    Morrison AP, Turkington D, Pyle M, Spencer H, Brabban A, Dunn G, et al. Cognitive therapy for people with schizophrenia spectrum disorders not taking antipsychotic drugs: A single-blind randomised controlled trial. The Lancet. 2014;383:1395–1403.CrossRefGoogle Scholar
  19. 19.
    Anderson JP, Icten Z, Alas V, Benson C, Joshi K. Comparison and predictors of treatment adherence and remission among patients with schizophrenia treated with paliperidone palmitate or atypical oral antipsychotics in community behavioral health organizations. BMC Psychiatry. 2017;17:1–10.CrossRefGoogle Scholar
  20. 20.
    Velligan DI, Sajatovic M, Hatch A, Kramata P, Docherty JP. Why do psychiatric patients stop antipsychotic medication? A systematic review of reasons for nonadherence to medication in patients with serious mental illness. Patient Prefer Adherence. 2017;11:449–468.CrossRefGoogle Scholar
  21. 21.
    Thase ME, Kingdon D, Turkington D. The promise of cognitive behavior therapy for treatment of severe mental disorders: A review of recent developments. World psychiatry. 2014;13:244–250.CrossRefGoogle Scholar
  22. 22.
    Pankowski D, Kowalski J, Gaweda L. The effectiveness of metacognitive training for patients with schizophrenia: a narrative systematic review of studies published between 2009 and 2015. Psychiatr Pol. 2016;50:787–803.CrossRefGoogle Scholar
  23. 23.
    Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. Am J Psychiatry. 2011;168:472–485.CrossRefGoogle Scholar
  24. 24.
    Fiszdon JM, Reddy LF. Review of social cognitive treatments for psychosis. Clin Psychol Rev. 2012;32:724–740.CrossRefGoogle Scholar
  25. 25.
    Medalia A, Saperstein AM. Does cognitive remediation for schizophrenia improve functional outcomes? Current Opinion in Psychiatry. 2013;26:151–157.CrossRefGoogle Scholar
  26. 26.
    Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry. 1987;44:660–669.CrossRefGoogle Scholar
  27. 27.
    Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? British medical journal (Clinical research ed.). 1988;296:681–682.CrossRefGoogle Scholar
  28. 28.
    Weinberger DR, Harrison P, editors. Schizophrenia, 3rd Edition. 3rd ed.: Wiley-Blackwell; 2011.Google Scholar
  29. 29.
    Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, et al. Altering the course of schizophrenia: progress and perspectives. Nature Reviews Neuroscience. 2016:1–31.Google Scholar
  30. 30.
    Brown AS. The environment and susceptibility to schizophrenia. Progress in neurobiology. 2011;93:23–58.CrossRefGoogle Scholar
  31. 31.
    Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nature Reviews Neuroscience. 2016:1–9.Google Scholar
  32. 32.
    Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell. 2017;169:1177–1186.CrossRefGoogle Scholar
  33. 33.
    Ursini G, Punzi G, Chen Q, Marenco S, Robinson J, Porcelli A, et al. Placental gene expression mediates the interaction between obstetrical history and genetic risk for schizophrenia. bioRxiv. 2017:1–41.Google Scholar
  34. 34.
    Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences. 2012;35:57–67.CrossRefGoogle Scholar
  35. 35.
    Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–193.CrossRefGoogle Scholar
  36. 36.
    Mighdoll MI, Tao R, Kleinman JE, Hyde TM. Myelin, myelin-related disorders, and psychosis. Schizophr Res. 2015;161:85–93.CrossRefGoogle Scholar
  37. 37.
    Monin A, Baumann PS, Griffa A, Xin L, Mekle R, Fournier M, et al. Glutathione deficit impairs myelin maturation: Relevance for white matter integrity in schizophrenia patients. Molecular Psychiatry. 2015;20:827–838.CrossRefGoogle Scholar
  38. 38.
    Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, et al. Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:16621–16626.CrossRefGoogle Scholar
  39. 39.
    Walterfang M, Wood SJ, Velakoulis D, Copolov D, Pantelis C. Diseases of White Matter and Schizophrenia-Like Psychosis. Australian & New Zealand Journal of Psychiatry. 2016;39:746–756.CrossRefGoogle Scholar
  40. 40.
    Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends in pharmacological sciences. 2013;34:167–177.CrossRefGoogle Scholar
  41. 41.
    Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, et al. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review. Neuroscience and Biobehavioral Reviews. 2017;78:44–56.CrossRefGoogle Scholar
  42. 42.
    Emiliani FE, Sedlak TW, Sawa A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Current Opinion in Psychiatry. 2014;27:185–190.CrossRefGoogle Scholar
  43. 43.
    Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: A novel treatment target in psychiatry. Trends in pharmacological sciences. 2008;29:346–351.CrossRefGoogle Scholar
  44. 44.
    Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. Journal of neurochemistry. 2003;84:1173–1183.CrossRefGoogle Scholar
  45. 45.
    Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. Cerebellum. 2007;6:308–314.CrossRefGoogle Scholar
  46. 46.
    Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry. 2013;46:200–206.CrossRefGoogle Scholar
  47. 47.
    Monin A, Fournier M, Baumann PS, Cuénod M, Do KQ. Role of Redox Dysregulation in White Matter Anomalies Associated with Schizophrenia. In: Modeling the Psychopathological Dimensions of Schizophrenia - From Molecules to Behavior: Elsevier; 2016. p. 481–500.Google Scholar
  48. 48.
    Soria FN, Zabala A, Pampliega O, Palomino A, Miguelez C, Ugedo L, et al. Cystine/glutamate antiporter blockage induces myelin degeneration. Glia. 2016;64:1381–1395.CrossRefGoogle Scholar
  49. 49.
    Baker DA, Madayag A, Kristiansen LV, Meador-Woodruff JH, Haroutunian V, Raju I. Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology. 2008;33:1760–1772.CrossRefGoogle Scholar
  50. 50.
    Baker DA, Xi Z, Shen H, Swanson CJ, Kalivas PW. The Origin and Neuronal Function of In Vivo Nonsynaptic Glutamate. The Journal of Neuroscience. 2002;22:9134–9141.CrossRefGoogle Scholar
  51. 51.
    Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron. 2010;65:585–596.CrossRefGoogle Scholar
  52. 52.
    Phensy A, Duzdabanian HE, Brewer S, Panjabi A, Driskill C, Berz A, et al. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment. Frontiers in behavioral neuroscience. 2017;11:1–17.Google Scholar
  53. 53.
    Rapado-Castro M, Dodd S, Bush AI, Malhi GS, Skvarc DR, On ZX, et al. Cognitive effects of adjunctive N-acetyl cysteine in psychosis. Psychological Medicine. 2017;47:866–876.CrossRefGoogle Scholar
  54. 54.
    Rapado-Castro M, Berk M, Venugopal K, Bush AI, Dodd S, Dean OM. Towards stage specific treatments: Effects of duration of illness on therapeutic response to adjunctive treatment with N-acetyl cysteine in schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry. 2015;57:69–75.CrossRefGoogle Scholar
  55. 55.
    Asevedo E, Cunha GR, Zugman A, Mansur RB, Brietzke E. N-acetylcysteine as a potentially useful medication to prevent conversion to schizophrenia in at-risk individuals. Reviews in the neurosciences. 2012;23:353–362.CrossRefGoogle Scholar
  56. 56.
    Yung AR, McGorry PD, McFarlane CA, Patton GC. The Pace Clinic: Development of a Clinical Service for Young People at High Risk of Psychosis. Australasian Psychiatry. 1995;3:345–349.CrossRefGoogle Scholar
  57. 57.
    Fusar-Poli P, Schultze-Lutter F, Cappucciati M, Rutigliano G, Bonoldi I, Stahl D, et al. The Dark Side of the Moon: Meta-analytical Impact of Recruitment Strategies on Risk Enrichment in the Clinical High Risk State for Psychosis. Schizophrenia Bulletin. 2016;42:732–743.CrossRefGoogle Scholar
  58. 58.
    Koutsouleris N, Riecher-Rossler A, Meisenzahl EM, Smieskova R, Studerus E, Kambeitz-Ilankovic L, et al. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophrenia Bulletin. 2015;41:471–482.CrossRefGoogle Scholar
  59. 59.
    Lavoie S, Berger M, Schlogelhofer M, Schafer MR, Rice S, Kim S, et al. Erythrocyte glutathione levels as long-term predictor of transition to psychosis. Translational Psychiatry. 2017;7:1–5.CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Sven Wasserthal
    • 1
  • Christian Kloss
    • 2
  • René Hurlemann
    • 2
  • Johannes Schultz
    • 1
  1. 1.Abteilung für Medizinische PsychologieUniversitätsklinikum BonnBonnDeutschland
  2. 2.Abteilung für Medizinische Psychologie, Klinik und Poliklinik für Psychiatrie und PsychotherapieUniversitätsklinikum BonnBonnDeutschland

Personalised recommendations