Advertisement

DNP - Der Neurologe & Psychiater

, Volume 18, Supplement 1, pp 54–59 | Cite as

Endzündliche Erkrankungen des ZNS

Welche Rolle spielt die Ernährung für die Multiple Sklerose?

  • Ralf LinkerEmail author
  • Mathias Mäurer
Zertifizierte Fortbildung
  • 236 Downloads

Zusammenfassung

Die Bedeutung von Nahrungsbestandteilen, ihrer möglichen Interaktion mit dem Mikrobiom und ihr Einfluss auf die Multiple Sklerose wurde in den letzten Jahren intensiv untersucht. Die bisherigen Ergebnisse eröffnen neue Perspektiven auf mögliche ätiologische Faktoren bei der Entstehung von ZNS-Autoimmunität, machen aber auch klar, dass wahrscheinlich nicht einzelne Ernährungsbestandteile eine Rolle spielen, sondern dass das Zusammenspiel vieler verschiedener Faktoren im Vordergrund steht.

Literatur

  1. 1.
    Berer K et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011 Oct 26;479(7374):538–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Mozaffarian, D. et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med 371, 624–634, doi:10.1056/NEJMoa1304127 (2014).CrossRefPubMedGoogle Scholar
  3. 3.
    Jorg, S. et al. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Exp Neurol 279, 212–222, doi:10.1016/j.expneurol.2016.03.010 (2016).CrossRefPubMedGoogle Scholar
  4. 4.
    Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517, doi:10.1038/nature11984 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522, doi:10.1038/nature11868 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hucke, S. et al. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J Autoimmun 67, 90–101, doi:10.1016/j.jaut.2015.11.001 (2016).CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang, T. et al. Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia. Sci Rep 5, 16548, doi:10.1038/srep16548 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Farez, M. F., Fiol, M. P., Gaitan, M. I., Quintana, F. J. & Correale, J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 86, 26–31, doi:10.1136/jnnp-2014-307928 (2015).CrossRefPubMedGoogle Scholar
  9. 9.
    Yi, B. et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res 166, 103–110, doi:10.1016/j.trsl.2014.11.007 (2015).CrossRefPubMedGoogle Scholar
  10. 10.
    Fitzgerald, K. C. et al. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol, doi:10.1002/ana.24965 (2017).Google Scholar
  11. 11.
    Swank, R. L. & Goodwin, J. W. How saturated fats may be a causative factor in multiple sclerosis and other diseases. Nutrition 19, 478 (2003).CrossRefPubMedGoogle Scholar
  12. 12.
    Haghikia, A. et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 43, 817–829, doi:10.1016/j.immuni.2015.09.007 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    Mani, V., Hollis, J. H. & Gabler, N. K. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutrition & metabolism 10, 6, doi:10.1186/1743-7075-10-6 (2013)CrossRefGoogle Scholar
  14. 14.
    Huang, S. et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. Journal of lipid research 53, 2002–2013, doi:10.1194/jlr.D029546 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bjornevik, K., Chitnis, T., Ascherio, A. & Munger, K. L. Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult Scler, 1352458517691150, doi:10.1177/1352458517691150 (2017).Google Scholar
  16. 16.
    Hoare, S. et al. Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: Results from the Ausimmune Study. Mult Scler 22, 884–892, doi:10.1177/1352458515604380 (2016).CrossRefPubMedGoogle Scholar
  17. 17.
    Harbige, L. S., Layward, L., Morris-Downes, M. M., Dumonde, D. C. & Amor, S. The protective effects of omega-6 fatty acids in experimental autoimmune encephalomyelitis (EAE) in relation to transforming growth factor-beta 1 (TGF-beta1) up-regulation and increased prostaglandin E2 (PGE2) production. Clin Exp Immunol 122, 445–452 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Farinotti, M. et al. Dietary interventions for multiple sclerosis. The Cochrane database of systematic reviews 12, CD004192, doi:10.1002/14651858.CD004192.pub3 (2012).PubMedGoogle Scholar
  19. 19.
    Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature. 2012 Aug 30;488(7413):675–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016 Apr 29;352(6285):539–44.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011 Jan;12(1):5–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Hedstrom, A. K., Olsson, T. & Alfredsson, L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler 18, 1334–1336, doi:10.1177/1352458512436596 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Neurologische KlinikUniversitätsklinikum ErlangenErlangenDeutschland
  2. 2.Klinikum Würzburg Mitte gGmbHStandort JuliusspitalWürzburgDeutschland

Personalised recommendations