Skip to main content
Log in

Neues von ESC und AHA

Perspektiven zu cholesterinwirksamer Behandlung 2014

  • Schwerpunkt_Lipidologie
  • Published:
CardioVasc Aims and scope

Zusammenfassung

Cholesterinwirksame Therapie ist eine Schlüsselmaßnahme in der Prävention kardiovaskulärer Erkrankungen. Dass dieses Kapitel der Gesundheitsversorgung mit der Statintherapie nicht abgeschlossen ist, wurde bei den diesjährigen großen internationalen Kardiologiekongressen sichtbar. Große Erwartungen an weitere Entwicklungen zur Erhöhung der Wirksamkeit cholesterinsenkender Behandlung lassen eine Vielzahl von Ergebnissen klinischer Programme mit den PCSK9-Inhibitoren erkennen. Schon kurze Zeit nach der Entdeckung klinischer Implikationen von PCSK9-Mutationen liegen größere Studien zu Wirkungen und Verträglichkeit monoklonaler Antikörper gegen PCSK9 vor. Der Beitrag führt in Erkenntnisse zur Funktion von PCSK9 ein und erlaubt eine Bewertung therapeutischer Wirkungen auf dem Boden einer systematischen Analyse bisher vorgestellter Studien. Die beträchtliche LDL-Cholesterin-senkende Potenz bei einem verblüffend guten Sicherheitsprofil weisen auf Behandlungsoptionen in klinischen Konstellationen, für die bislang „unmet needs“ bestehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Marchand F. Über Arteriosklerose (Atherosklerose), Verh Deutscher Kongress Inn Med. 1904;21:29–53.

    Google Scholar 

  2. Windaus A. Über den Gehalt normaler und atheromatöser Aorten an Cholesterin und Cholesterinestern. Hoppe Seylers Z Physiol Chem. 1910;67:174–6.

    Google Scholar 

  3. Anitschkow N. Über die Veränderungen der Kaninchenaorta bei experimenteller Cholesterinsteatose. Beitr Pathol Anat. 1913;56:379–404.

    Google Scholar 

  4. Keys A, Menotti A, Karvonen MJ et al. The diet and 15-year death rate in the Seven Countries Study. Am J Epidemiol. 1986;124:903–15.

    CAS  PubMed  Google Scholar 

  5. Kannel WB, Bishop Lecture. Contribution of the Framingham Study to preventive cardiology, J Am Coll Cardiol. 1990;15:206–11.

    CAS  PubMed  Google Scholar 

  6. Assmann G, Cullen P, Schulte H et al. The Münster Heart Study (PROCAM). Results of follow-up at 8 years. Eur Heart J. 1998;19 Suppl A:A2–11.

    PubMed  Google Scholar 

  7. Erdmann J, Linsel-Nitschke P, Schunkert H et al. Genetische Ursachen des Herzinfarktes: Neue Aspekte durch genomweite Assoziationsstudien Dtsch Arztebl Int. 2010;107:694–9.

    Google Scholar 

  8. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG et al. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41.

    PubMed  Google Scholar 

  9. Kathiresan S, Melander O, Anevski D et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240–9.

    CAS  PubMed  Google Scholar 

  10. Cohen JC, Boerwinkle E, Mosley TH Jr et al. Sequence Variations in PCSK9, Low LDL, and Protection against Coronary Heart Disease. N Engl J Med. 2006;354:1264–72.

    CAS  PubMed  Google Scholar 

  11. Goldstein JL, Brown MS. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc Natl Acad Sci. 1973;70:2804–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Klose G, Laufs U, März W et al. Familiäre Hypercholesterinämie: Entwicklungen in Diagnostik und Behandlung. Dtsch Arztebl Int. 2014;111:523–9.

    PubMed Central  PubMed  Google Scholar 

  13. Baigent C, Blackwell L, Emberson J et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    PubMed  Google Scholar 

  14. Reiner Z, Catapano AL, De Backer G et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) Eur Heart J. 2011;32:1769–818.

    PubMed  Google Scholar 

  15. Stone NJ, Robinson JG, Lichtenstein AH et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.

    PubMed  Google Scholar 

  16. Boekholdt SM, Hovingh GK, Mora S et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014;64:485–94.

    CAS  PubMed  Google Scholar 

  17. Nicholls SJ, Ballantyne CM, Barter P et al. Effect of Two Intensive Statin Regimens on Progression of Coronary Disease. N Engl J Med. 2011;365:2078–87.

    CAS  PubMed  Google Scholar 

  18. Pijlman AH, Huijgen R, Verhagen SN et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis. 2010;209:189–94.

    CAS  PubMed  Google Scholar 

  19. Béliard S, Carreau V, Carrié A et al. Improvement in LDL-cholesterol levels of patients with familial hypercholesterolemia: Can we do better? Analysis of results obtained during the past two decades in 1669 French subjects. Atherosclerosis. 2014;234:136–41.

    PubMed  Google Scholar 

  20. Grundy SM. Statin discontinuation and intolerance: the challenge of lifelong therapy. Ann Intern Med. 2013;158:562–3.

    PubMed  Google Scholar 

  21. Erqou S, Kaptoge S, Perry PL et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.

    CAS  PubMed  Google Scholar 

  22. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R et al. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9.

    CAS  PubMed  Google Scholar 

  23. Fischer S, Julius U, Tselmin S et al. [Lipoprotein(a): a risk factor for atherosclerosis]. Dtsch Med Wochenschr. 2014;139:1204–6.

    CAS  PubMed  Google Scholar 

  24. Nordestgaard BG, Chapman MJ, Ray K et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–53

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Leebmann J, Roeseler E, Julius U et al. Lipoprotein Apheresis in Patients With Maximally Tolerated Lipid-Lowering Therapy, Lipoprotein(a)- Hyperlipoproteinemia, and Progressive Cardiovascular Disease: Prospective Observational Multicenter Study. Circulation. 2013;128:2567–76.

    CAS  PubMed  Google Scholar 

  26. Strom TB, Tveten K, Leren TP. PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochem J 2014;457:99–105.

    CAS  PubMed  Google Scholar 

  27. Grozdanov PN, Petkov PM, Karagyozov LK, Dabeva MD. Expression and localization of PCSK9 in rat hepatic cells. Biochem Cell Biol 2006;84:80–92.

    CAS  PubMed  Google Scholar 

  28. Benjannet S, Rhainds D, Hamelin J, et al. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem 2006;281:30561–72.

    CAS  PubMed  Google Scholar 

  29. Cameron J, Holla OL, Laerdahl JK, et al. Mutation S462P in the PCSK9 gene reduces secretion of mutant PCSK9 without affecting the autocatalytic cleavage. Atherosclerosis 2009;203:161–5.

    CAS  PubMed  Google Scholar 

  30. Gustafsen C, Kjolby M, Nyegaard M, et al. The hypercholesterolemiarisk gene SORT1 facilitates PCSK9 secretion. Cell Metab 2014;19:310–8.

    CAS  PubMed  Google Scholar 

  31. Homer VM, Marais AD, Charlton F, et al. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis 2008;196:659–66.

    CAS  PubMed  Google Scholar 

  32. Chorba JS, Shokat KM. The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Active Site and Cleavage Sequence Differentially Regulate Protein Secretion from Proteolysis. J Biol Chem 2014;289:29030–43.

    CAS  PubMed  Google Scholar 

  33. Dewpura T, Raymond A, Hamelin J, et al. PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a phosphoprotein in humans. FEBS J 2008;275:3480–93.

    CAS  PubMed  Google Scholar 

  34. Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A 2004;101:7100–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci U S A 2005;102:2069–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 2004;279:48865–75.

    CAS  PubMed  Google Scholar 

  37. Benjannet S, Hamelin J, Chretien M, Seidah NG. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem 2012;287:33745–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Chen Y, Wang H, Yu L, et al. Role of ubiquitination in PCSK9-mediated low-density lipoprotein receptor degradation. Biochem Biophys Res Commun 2011;415:515–8.

    CAS  PubMed  Google Scholar 

  39. Bottomley MJ, Cirillo A, Orsatti L, et al. Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J Biol Chem 2009;284:1313–23.

    CAS  PubMed  Google Scholar 

  40. Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007;282:18602–12.

    CAS  PubMed  Google Scholar 

  41. Li J, Tumanut C, Gavigan JA, Huang WJ, et al. Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J 2007;406:203–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 2007;282:20799–803.

    CAS  PubMed  Google Scholar 

  43. Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/ kexin type 9a in mouse liver. J Biol Chem 2004;279:50630–8.

    CAS  PubMed  Google Scholar 

  44. Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 2007;48:1488–98.

    CAS  PubMed  Google Scholar 

  45. Wang Y, Huang Y, Hobbs HH, Cohen JC. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J Lipid Res 2012;53:1932–43.

    PubMed Central  PubMed  Google Scholar 

  46. Du F, Hui Y, Zhang M, Linton MF, et al. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J Biol Chem 2011;286:43054–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Saavedra YG, Day R, Seidah NG. The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J Biol Chem 2012;287:43492–501.

    PubMed  Google Scholar 

  48. Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004;65:419–22.

    CAS  PubMed  Google Scholar 

  49. Fan D, Yancey PG, Qiu S, et al. Self-association of human PCSK9 correlates with its LDLR-degrading activity. Biochemistry 2008;47:1631–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Tavori H, Fan D, Blakemore JL, et al. Serum proprotein convertase subtilisin/ kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation 2013;127:2403–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Cameron J, Bogsrud MP, Tveten K, et al. Serum levels of proprotein convertase subtilisin/kexin type 9 in subjects with familial hypercholesterolemia indicate that proprotein convertase subtilisin/kexin type 9 is cleared from plasma by low-density lipoprotein receptor-independent pathways. Transl Res 2012;160:125–30.

    CAS  PubMed  Google Scholar 

  52. Kosenko T, Golder M, Leblond G, et al. Low density lipoprotein binds to proprotein convertase subtilisin/kexin type-9 (PCSK9) in human plasma and inhibits PCSK9-mediated low density lipoprotein receptor degradation. J Biol Chem 2013;288:8279–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Essalmani R, Susan-Resiga D, Chamberland A, et al. In vivo evidence that furin from hepatocytes inactivates PCSK9. J Biol Chem 2011;286:4257–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Han B, Eacho PI, Knierman MD, et al. Isolation and characterization of the circulating truncated form of PCSK9. J Lipid Res 2014;55:1505–14.

    CAS  PubMed  Google Scholar 

  55. Lipari MT, Li W, Moran P, et al. Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem 2012;287:43482–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Xu W, Liu L, Hornby D. c-IAP1 binds and processes PCSK9 protein: linking the c-IAP1 in a TNF-alpha pathway to PCSK9-mediated LDLR degradation pathway. Molecules 2012;17:12086–101.

    CAS  PubMed  Google Scholar 

  57. Seidah NG, Poirier S, Denis M, et al. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One 2012;7:e41865.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Mayer G, Poirier S, Seidah NG. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem 2008;283:31791–801.

    CAS  PubMed  Google Scholar 

  59. Cariou B, Langhi C, Le BM, et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond) 2013;10:4.

    CAS  Google Scholar 

  60. Persson L, Cao G, Stahle L, et al. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol 2010;30:2666–72.

    CAS  PubMed  Google Scholar 

  61. Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab 2009;94:2537–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Baass A, Dubuc G, Tremblay M, et al. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem 2009;55:1637–45.

    CAS  PubMed  Google Scholar 

  63. Persson L, Henriksson P, Westerlund E, et al. Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler Thromb Vasc Biol 2012;32:810–4.

    CAS  PubMed  Google Scholar 

  64. Chernogubova E, Strawbridge R, Mahdessian H, et al. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 2012;32:1526–34.

    CAS  PubMed  Google Scholar 

  65. Alborn WE, Cao G, Careskey HE, et al. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem 2007;53:1814–9.

    CAS  PubMed  Google Scholar 

  66. Araki S, Suga S, Miyake F, et al. Circulating PCSK9 levels correlate with the serum LDL cholesterol level in newborn infants. Early Hum Dev 2014;90:607–11.

    CAS  PubMed  Google Scholar 

  67. Lambert G, Petrides F, Chatelais M, et al. Elevated Plasma PCSK9 Level Is Equally Detrimental for Patients With Nonfamilial Hypercholesterolemia and Heterozygous Familial Hypercholesterolemia, Irrespective of Low-Density Lipoprotein Receptor Defects. J Am Coll Cardiol 2014;63:2365–73.

    CAS  PubMed  Google Scholar 

  68. Brouwers MC, Troutt JS, van Greevenbroek MM, et al. Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: The CODAM study. Atherosclerosis 2011;217:263–7.

    CAS  PubMed  Google Scholar 

  69. Tavori H, Giunzioni I, Linton MF, Fazio S. Loss of plasma proprotein convertase subtilisin/kexin 9 (PCSK9) after lipoprotein apheresis. Circ Res 2013;113:1290–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hori M, Ishihara M, Yuasa Y, et al. Removal of plasma mature and furincleaved proprotein convertase subtilisin/kexin 9 (PCSK9) by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9. J Clin Endocrinol Metab 2014:jc20143066.

  71. Wu M, Dong B, Cao A, Li H, Liu J. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters. Atherosclerosis 2012;224:401–10.

    CAS  PubMed  Google Scholar 

  72. Browning JD, Horton JD. Fasting reduces plasma proprotein convertase, subtilisin/kexin type 9 and cholesterol biosynthesis in humans. J Lipid Res 2010;51:3359–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Costet P, Cariou B, Lambert G, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory elementbinding protein 1c. J Biol Chem 2006;281:6211–8.

    CAS  PubMed  Google Scholar 

  74. Ai D, Chen C, Han S, Ganda A, et al. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 2012;122:1262–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Awan Z, Dubuc G, Faraj M, et al. The effect of insulin on circulating PCSK9 in postmenopausal obese women. Clin Biochem 2014.

  76. Kappelle PJ, Lambert G, Dullaart RP. Plasma proprotein convertase subtilisin-kexin type 9 does not change during 24h insulin infusion in healthy subjects and type 2 diabetic patients. Atherosclerosis 2011;214:432–5.

    CAS  PubMed  Google Scholar 

  77. Kourimate S, Le MC, Langhi C, et al. Dual mechanisms for the fibratemediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem 2008;283:9666–73.

    CAS  PubMed  Google Scholar 

  78. Duan Y, Chen Y, Hu W, et al. Peroxisome Proliferator-activated receptor gamma activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem 2012;287:23667–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Langhi C, Le MC, Kourimate S, et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett 2008;582:949–55.

    CAS  PubMed  Google Scholar 

  80. Scotti E, Hong C, Yoshinaga Y, et al. Targeted disruption of the idol gene alters cellular regulation of the low-density lipoprotein receptor by sterols and liver x receptor agonists. Mol Cell Biol 2011;31:1885–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Li H, Liu J. The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J 2012;443:757–68.

    CAS  PubMed  Google Scholar 

  82. Tao R, Xiong X, DePinho RA, et al. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 2013;288:29252–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Miranda MX, van Tits LJ, Lohmann C, et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 2014.

  84. Melone M, Wilsie L, Palyha O, et al. Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol 2012;59:1697–705.

    CAS  PubMed  Google Scholar 

  85. Ason B, Tep S, Davis HR, Jr., et al. Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J Lipid Res 2011;52:679–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Berthold HK, Seidah NG, Benjannet S, Gouni-Berthold I. Evidence from a randomized trial that simvastatin, but not ezetimibe, upregulates circulating PCSK9 levels. PLoS One 2013;8:e60095.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Romano M, Di Taranto MD, D‘Agostino MN, et al. Identification and functional characterization of LDLR mutations in familial hypercholesterolemia patients from Southern Italy. Atherosclerosis 2010;210:493–6.

    CAS  PubMed  Google Scholar 

  88. Guo YL, Liu J, Xu RX, et al. Short-term impact of low-dose atorvastatin on serum proprotein convertase subtilisin/kexin type 9. Clin Drug Investig 2013;33:877–83.

    CAS  PubMed  Google Scholar 

  89. Noguchi T, Kobayashi J, Yagi K, et al. Comparison of effects of bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/ kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: results from a crossover study. Atherosclerosis 2011;217:165–70.

    CAS  PubMed  Google Scholar 

  90. Costet P, Hoffmann MM, Cariou B, et al. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 2010;212:246–51.

    CAS  PubMed  Google Scholar 

  91. Cariou B, Le BM, Langhi C, et al. Association between plasma PCSK9 and gamma-glutamyl transferase levels in diabetic patients. Atherosclerosis 2010;211:700–2.

    CAS  PubMed  Google Scholar 

  92. Dong B, Wu M, Li H, Kraemer FB, et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res 2010;51:1486–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Nozue T, Hattori H, Ishihara M, et al. Comparison of effects of pitavastatin versus pravastatin on serum proprotein convertase subtilisin/kexin type 9 levels in statin-naive patients with coronary artery disease. Am J Cardiol 2013;111:1415–9.

    CAS  PubMed  Google Scholar 

  94. Awan Z, Seidah NG, MacFadyen JG, et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem 2012;58:183–9.

    CAS  PubMed  Google Scholar 

  95. Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2004;24:1454–9.

    CAS  PubMed  Google Scholar 

  96. Mayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 2008;7:22.

    PubMed Central  PubMed  Google Scholar 

  97. Lambert G, Ancellin N, Charlton F, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 2008;54:1038–45.

    CAS  PubMed  Google Scholar 

  98. Troutt JS, Alborn WE, Cao G, Konrad RJ. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J Lipid Res 2010;51:345–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Sahebkar A. Circulating Levels of Proprotein Convertase Subtilisin Kexin Type 9 are Elevated by Fibrate Therapy: A Systematic Review and Meta-analysis of Clinical Trials. Cardiol Rev 2014.

  100. Hentze H, Jensen KK, Chia SM, et al. Inverse relationship between LDL cholesterol and PCSK9 plasma levels in dyslipidemic cynomolgus monkeys: effects of LDL lowering by ezetimibe in the absence of statins. Atherosclerosis 2013;231:84–90.

    CAS  PubMed  Google Scholar 

  101. Feingold KR, Moser AH, Shigenaga JK, et al. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008;374:341–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Li S, Guo YL, Xu RX, et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 2014;234:441–5.

    CAS  PubMed  Google Scholar 

  103. Zhang Y, Zhu CG, Xu RX, et al. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J Clin Lipidol 2014;8:494–500.

    PubMed  Google Scholar 

  104. Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, Dandona S, Roberts R, Quyyumi AA, et al. Plasma PCSK9 Levels Are Elevated with Acute Myocardial Infarction in Two Independent Retrospective Angiographic Studies. PLoS One 2014;9:e106294.

    PubMed Central  PubMed  Google Scholar 

  105. Kwakernaak AJ, Lambert G, Slagman MC, et al. Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 2013;226:459–65.

    CAS  PubMed  Google Scholar 

  106. Jin K, Park BS, Kim YW, Vaziri ND. Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis 2014;63:584–9.

    CAS  PubMed  Google Scholar 

  107. Roche-Molina M, Sanz-Rosa D, Cruz FM, et al. Induction of Sustained Hypercholesterolemia by Single Adeno-Associated Virus-Mediated Gene Transfer of Mutant hPCSK9. Arterioscler Thromb Vasc Biol 2014.

  108. Al-Mashhadi RH, Sorensen CB, Kragh PM, et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 2013;5:166ra1.

    PubMed  Google Scholar 

  109. Denis M, Marcinkiewicz J, Zaid A, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 2012;125:894–901.

    CAS  PubMed  Google Scholar 

  110. Shen L, Peng HC, Nees SN, et al. Proprotein convertase subtilisin/kexin type 9 potentially influences cholesterol uptake in macrophages and reverse cholesterol transport. FEBS Lett 2013;587:1271–4.

    CAS  PubMed  Google Scholar 

  111. Tang Z, Jiang L, Peng J, et al. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int J Mol Med 2012;30:931–8.

    CAS  PubMed  Google Scholar 

  112. Wu CY, Tang ZH, Jiang L, et al. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 2012;359:347–58.

    CAS  PubMed  Google Scholar 

  113. Kuhnast S, van der Hoorn JW, Pieterman EJ, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 2014;55:2103–12.

    PubMed Central  PubMed  Google Scholar 

  114. Ason B, van der Hoorn JW, Chan J, et al. PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE. J Lipid Res 2014;55:2370–9.

    CAS  PubMed  Google Scholar 

  115. Kysenius K, Muggalla P, Matlik K, et al. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 2012;69:1903–16.

    CAS  PubMed  Google Scholar 

  116. Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 2008;283:2363–72.

    CAS  PubMed  Google Scholar 

  117. Canuel M, Sun X, Asselin MC, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 2013;8:e64145.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Labonte P, Begley S, Guevin C, et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 2009;50:17–24.

    CAS  PubMed  Google Scholar 

  119. Shan L, Pang L, Zhang R, et al. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun 2008;375:69–73.

    CAS  PubMed  Google Scholar 

  120. Hoover-Plow J, Huang M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism 2013;62:479–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Levy E, Ben Djoudi OA, Spahis S, et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 2013;227:297–306.

    CAS  PubMed  Google Scholar 

  122. Sharotri V, Collier DM, Olson DR, et al. Regulation of epithelial sodium channel traficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J Biol Chem 2012;287:19266–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Rashid S, Tavori H, Brown PE, et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor- dependent and -independent mechanisms. Circulation 2014;130:431–41.

    CAS  PubMed  Google Scholar 

  124. Le MC, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 2009;29:684–90.

    Google Scholar 

  125. Le MC, Berger JM, Lespine A, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 2013;33:1484–93.

    Google Scholar 

  126. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003;34:154–6.

    CAS  PubMed  Google Scholar 

  127. Desai NR, Giugliano RP, Zhou J et al. AMG 145, a monoclonal antibody against PCSK9, facilitates achievement of national cholesterol education program-adult treatment panel III low-density lipoprotein cholesterol goals among high-risk patients: an analysis from the LAPLACE-TIMI 57 trial (LDL-C assessment with PCSK9 monoclonal antibody inhibition combined with statin therapy-thrombolysis in myocardial infarction 57). J Am Coll Cardiol 2014;63:430–3.

    CAS  PubMed  Google Scholar 

  128. Giuliano RP, Desai NR, Kohli P et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 2012;380:2007–17.

    Google Scholar 

  129. Desai NR, Kohli P, Giugliano RP et al. AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. Circulation 2013;128:962–9.

    CAS  PubMed  Google Scholar 

  130. Koren MJ, Scott R, Kim JB et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2012;380:1995–2006.

    CAS  PubMed  Google Scholar 

  131. Sullivan D, Olsson AG, Scott R et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 2012;308:2497–506.

    CAS  PubMed  Google Scholar 

  132. Raal F, Scott R, Somaratne R et al. Low-density lipoprotein cholesterollowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 2012;126:2408–17.

    CAS  PubMed  Google Scholar 

  133. Raal FJ, Stein EA, Dufour R et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD- 2): a randomised, double-blind, placebo-controlled trial. Lancet 2014; e-pub ahead of print

  134. Koren MJ, Giugliano RP, Raal FJ et al. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation 2014;129:234–43.

    Google Scholar 

  135. Raal FJ, Honarpour N, Blom DJ et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 2014; epub ahead of print.

  136. Blom DJ, Hala T, Bolognese M et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 2014;370:1809–19.

    CAS  PubMed  Google Scholar 

  137. Kastelein JP et al. ESC 2014, Barcelona, Spanien, Hot-Line-Session #707, oral presentation (www.escardio.org/congresses)

  138. Cannon P et al, ESC 2014, Barcelona, Spanien, Hot-Line-Session # 707, oral presentation (www.escardio.org/congresses)

  139. Robinson J, Farnier M, Krempf M et al. ESC 2014, Barcelona, Spanien, Hot-Line-Session # 707, oral presentation (www.escardio.org/congresses)

  140. Robinson JG, Farnier M, Krempf M. Long-term safety, tolerability and efficacy of alirocumab in high cardiovascular risk patients: ODYSSEY LONG TERM. Efficacy by subgroup, and safety when LDL-C <25 mg/dl. oral presentation AHA 2014

  141. Bays H, Gaudet D, Weiss R et al. PCSK9 Inhibitor Alirocumab as Add-on to Atorvastatin versus Other Lipid Treatment Strategies in Patients at High CVD Risk: ODYSSEY OPTIONS I, oral presentation AHA 2014

  142. Bays H, Farnier M, Gaudet D et al. Efficacy And Safety of Combining Alirocumab With Atorvastatin Or Rosuvastatin Versus Statin Intensification Or Adding Ezetimibe In High Cardiovascular Risk Patients: ODYSSEY OPTIONS I and II, oral presentation AHA 2014

  143. Moriarty PM, Thompson PD, Cannon P et al. ODYSSEY ALTERNATIVE: Efficacy And Safety Of The Proprotein Convertase Subtilisin/ Kexin Typ 9 Monoclonal Antibody, Alirocumab, Versus Ezetimibe, In Patients With Statin Intolerance As Defined By A Placebo Run-in And Statin Rechallenge Arm, oral presentation AHA 2014.

  144. Ginsberg H, Rader D, Raal FJ et al. ODYSSEY HIGH FH: Efficacy And Safety Of Alirocumab In Patients With Severe Heterozygous Familial Hypercholesterolemia, oral presentation AHA 2014.

  145. Kereiakes D, Robinson J, Cannon P, et al. Efficacy And Safety Of Alirocumab In High Cardiovascular Risk Patients With Suboptimally Controlled Hypercholesterolemia on Maximally Tolerated Doses Of Statins: The ODYSSEY COMBO I Study, oral presentation AHA 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Klose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klose, G., Schulz, R. & Koenig, W. Perspektiven zu cholesterinwirksamer Behandlung 2014. CV 14, 50–60 (2014). https://doi.org/10.1007/s15027-014-0521-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15027-014-0521-8

Schlüsselwörter

Navigation