Skip to main content
Log in

Herausforderungen im Zeitalter der Multigenanalyse

Früherkennung von Mammakarzinomen

  • Gynäkoonkologie
  • Fortbildung
  • Published:
Im Focus Onkologie Aims and scope

Seit einigen Jahren werden genetische Untersuchungen zum Brustkrebsrisiko als Paneldiagnostik durchgeführt. Das Deutsche Konsortium Familiärer Brust- und Eierstockkrebs hat drei Risikogruppen etabliert. Entsprechend der Einteilung werden Frauen, die Risikogene in sich tragen, Mamma-MRT, Mammasonografie und Mammografie in unterschiedlichen Abständen angeboten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Plon SE et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008;29(11):1282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmutzler R. Konsensusempfehlung des Deutschen Konsortiums Familiärer Brustund Eierstockkrebs zum Umgang mit Ergebnissen der Multigenanalyse. Geburtshilfe Frauenheilkd. 2017;77(07):733–9.

    Article  Google Scholar 

  3. Saslow D et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.

    Article  PubMed  Google Scholar 

  4. Ziv E et al. Mammographic breast density and family history of breast cancer. J Natl Cancer Inst. 2003;95(7):556–8.

    Article  Google Scholar 

  5. Tilanus-Linthorst MM et al. First experiences in screening women at high risk for breast cancer with MR imaging. Breast Cancer Res Treat. 2000;63(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  6. Pijpe A et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ. 2012;345: e5660.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kriege M et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37.

    Article  CAS  PubMed  Google Scholar 

  8. Plevritis SK et al. Cost-effectiveness of screening BRCA1/2 mutation carriers with breast magnetic resonance imaging. JAMA. 2006;295(20):2374–84.

    Article  CAS  PubMed  Google Scholar 

  9. Warner E et al. Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. J Clin Oncol. 2011;29(13):1664–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schenberg T et al. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer? J Med Radiat Sci. 2015;62(3):212–25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Passaperuma K et al. Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br J Cancer. 2012;107(1):24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leach MO et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet. 2005;365(9473):1769–78.

    Article  CAS  PubMed  Google Scholar 

  13. Sardanelli F et al. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk italian 1 study): final results. Invest Radiol. 2011;46(2):94–105.

    Article  PubMed  Google Scholar 

  14. Riedl CC et al. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol. 2015;33(10):1128–35.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lehman CD et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology. 2007;244(2):381–8.

    Article  PubMed  Google Scholar 

  16. Mavaddat N et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105(11):812–22.

    Article  CAS  PubMed  Google Scholar 

  17. Easton DF et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuchenbaecker KB et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017;317(23):2402–16.

    Article  CAS  PubMed  Google Scholar 

  19. Kuhl CK et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23(33):8469–76.

    Article  PubMed  Google Scholar 

  20. Ramus SJ et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J Natl Cancer Inst. 2015;107(11). pii: djv214.

  21. Antoniou AC et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(17):1651–2.

    PubMed  Google Scholar 

  22. Pritzlaff M et al. Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Res Treat. 2017;161(3):575–86.

    Article  PubMed  Google Scholar 

  23. Jones S et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonzalez KD et al. Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ruijs MW et al. TP53 germline mutation testingin 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47(6):421–8.

    Article  CAS  PubMed  Google Scholar 

  26. Economopoulou P et al. Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015;41(1):1–8.

    Article  CAS  Google Scholar 

  27. Ballinger ML et al. Surveillance recommendations for patients with germline TP53 mutations. Curr Opin Oncol. 2015;27(4):332–7.

    Article  CAS  PubMed  Google Scholar 

  28. Goldgar DE et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011;13(4):R73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roberts NJ et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  30. Stankovic T et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet. 1998;62(2):334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernstein JL et al. Radiation exposure, the ATM Gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J Natl Cancer Inst. 2010;102 (7):475–83.

    Google Scholar 

  32. Hansford S et al. Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol. 2015;1(1):23–32.

    Article  PubMed  Google Scholar 

  33. Aloraifi F et al. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: a meta-analysis of high-risk casecontrol screening studies. Cancer Genet. 2015;208(9):455–63.

    Article  CAS  PubMed  Google Scholar 

  34. Cybulski C et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol. 2011;29(28):3747–52.

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt MK et al. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J Clin Oncol. 2016;34(23):2750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weischer M et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol. 2012;30(35):4308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meindl A et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–4.

    Article  CAS  PubMed  Google Scholar 

  38. Pelttari LM et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278–88.

    Article  CAS  PubMed  Google Scholar 

  39. Song H et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J Clin Oncol. 2015;33(26):2901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loveday C et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43(9):879–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bogdanova N et al. Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer. 2008;122(4):802–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabell Witzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witzel, I., Speiser, D. Früherkennung von Mammakarzinomen. Im Focus Onkologie 21, 17–22 (2018). https://doi.org/10.1007/s15015-018-4024-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15015-018-4024-9

Navigation