Skip to main content
Log in

Triple-negatives Mammakarzinom

Kurative perioperative und palliative Strahlentherapie

  • Fortbildung
  • Published:
gynäkologie + geburtshilfe Aims and scope

Auch wenn die adjuvante Radiotherapie in der Klinik primär am allgemeinen Risikoprofil der Patientin — und weniger am molekularen Subtyp der Erkrankung — ausgerichtet wird, gibt es theoretische und empirische Befunde, die für eine besondere Bedeutung der Radiotherapie bei triple-negativen Mammakarzinomen sprechen. Diese könnte auch im Zusammenhang mit modernen systemischen Behandlungen wie der Immuntherapie noch zunehmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Fisher B et al. Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med. 1995;333(22):1456–61

    CAS  Google Scholar 

  2. Bartelink H et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001;345(19):1378–87

    CAS  Google Scholar 

  3. Hottinger A et al. Personalisierte adjuvante Strahlentherapie beim nodal-negativen Brustkrebs. InFo Onkologie. 2017;20(6):34–43

    Google Scholar 

  4. Goldhirsch A et al. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47

    CAS  Google Scholar 

  5. Kyndi M et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol. 2008;26(9):1419–26

    Google Scholar 

  6. Meyers MO et al. Impact of breast cancer molecular subtypes on locoregional recurrence in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol. 2011;18(10):2851–7

    Google Scholar 

  7. Nguyen PL et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol. 2008;26(14):2373–8

    Google Scholar 

  8. Nishimura R, Arima N. Is triple negative a prognostic factor in breast cancer? Breast Cancer. 2008;15(4):303–8

  9. Steward LT et al. Impact of radiation therapy on survival in patients with triple-negative breast cancer. Oncol Lett. 2014;7(2):548–552

    Google Scholar 

  10. Whelan TJ et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20

    CAS  Google Scholar 

  11. Bane AL et al. Tumor factors predictive of response to hypofractionated radiotherapy in a randomized trial following breast conserving therapy. Ann Oncol. 2014;25(5):992–8

    CAS  Google Scholar 

  12. Bernier J, Poortmans PM. Surgery and radiation therapy of triple-negative breast cancers: From biology to clinics. Breast. 2016;28:148–55

    Google Scholar 

  13. EBCTCG (Early Breast Cancer Trialists’ Collaborative Group) et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35

    Google Scholar 

  14. Ragaz J et al. Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J Natl Cancer Inst. 2005;97(2):116–26

    Google Scholar 

  15. Wang J et al. Adjuvant chemotherapy and radiotherapy in triple-negative breast carcinoma: a prospective randomized controlled multi-center trial. Radiother Oncol. 2011;100(2):200–4

    CAS  Google Scholar 

  16. Yao Y et al. Radiotherapy after surgery has significant survival benefits for patients with triple-negative breast cancer. Cancer Med. 2019;8:554–563

    CAS  Google Scholar 

  17. Haque W et al. Postmastectomy radiation therapy for triple negative, node-negative breast cancer. Radiother Oncol. 2019;132:48–54

    Google Scholar 

  18. Goldhirsch A et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–23

    CAS  Google Scholar 

  19. Recht A et al. Postmastectomy radiotherapy: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001;19(5):1539–69

    CAS  Google Scholar 

  20. Senkus E et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v8–30

    Google Scholar 

  21. Abdulkarim BS et al. Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J Clin Oncol. 2011;29(21):2852–8

    Google Scholar 

  22. Dragun AE et al. Locoregional recurrence in patients with triple-negative breast cancer: preliminary results of a single institution study. Am J Clin Oncol. 2011;34(3):231–7

    Google Scholar 

  23. Gradishar WJ et al. Breast Cancer Version 2.2015. J Natl Compr Canc Netw. 2015;13:448–75

    CAS  Google Scholar 

  24. Rusthoven CG et al. The impact of postmastectomy and regional nodal radiation after neoadjuvant chemotherapy for clinically lymph node-positive breast cancer: a National Cancer Database (NCDB) analysis. Ann Oncol. 2016;27(5):818–27

    CAS  Google Scholar 

  25. Park HS et al. Immortal time bias: a frequently unrecognized threat to validity in the evaluation of postoperative radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:1365–73

    Google Scholar 

  26. Rastogi P et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85

    Google Scholar 

  27. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39

    Google Scholar 

  28. Anders CK et al. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9 Suppl 2:S73–81

    CAS  Google Scholar 

  29. Carey LA et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34

    CAS  Google Scholar 

  30. Di Leo A et al. New approaches for improving outcomes in breast cancer in Europe. Breast. 2015;24:321–30

    Google Scholar 

  31. Stutz E et al. Hyperthermie inder Krebsbehandlung. Pipette SULM. 2017(6)13–4

    Google Scholar 

  32. Overgaard J et al. The heat is (still) on—the past and future of hyperthermic radiation oncology. Radiother Oncol. 2013;109(2)}:185–7

  33. Oei AL et al. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol. 2015;10:165

    Google Scholar 

  34. Datta NR et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742–53

    Google Scholar 

  35. Peeken JC et al. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front Oncol. 2017;7:132

    Google Scholar 

  36. Langlands FE et al. Breast cancer subtypes: response to radiotherapy and potential radiosensitisation. Br J Radiol. 2013;86(1023):20120601

    CAS  Google Scholar 

  37. Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;Suppl 4:2–8

    Google Scholar 

  38. Schneider BP et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14(24):8010–8

    CAS  Google Scholar 

  39. Wang L et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest New Drugs. 2012;30(6):2113–20

    CAS  Google Scholar 

  40. Jézéquel P et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015;17:43

    Google Scholar 

  41. Adams S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66

    Google Scholar 

  42. La Rocca E et al. Radiotherapy with the anti-programmed cell death ligand-1 immune checkpoint blocker avelumab: acute toxicities in triple-negative breast cancer. Med Oncol. 2018;36(1):4

    Google Scholar 

  43. Louvel G et al. Immunotherapy and pulmonary toxicities: can concomitant immune-checkpoint inhibitors with radiotherapy increase the risk of radiation pneumonitis? Eur Respir J. 2018;51(1). pii: 1701737

    Google Scholar 

  44. Luke JJ et al. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors. J Clin Oncol. 2018;36(16):1611–8

    CAS  Google Scholar 

  45. Shaverdian N et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017 Jul;18(7):895–903

    CAS  Google Scholar 

  46. Wushou A et al. Development of triple-negative breast cancer radiosensitive gene signature and validation based on transcriptome analysis. Breast Cancer Res Treat. 2015;154(1):57–62

    CAS  Google Scholar 

  47. Eschrich S et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys. 2009;75(2):497–505

    CAS  Google Scholar 

  48. Scott JG et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017;18(2):202–11

    Google Scholar 

  49. Maluta S et al. Role of Hyperthermia in Breast Cancer Locoregional Recurrence: A Review. Breast Cancer 2015,;10:408–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hottinger, AL., Zimmermann, F. Kurative perioperative und palliative Strahlentherapie. gynäkologie + geburtshilfe 24, 42–46 (2019). https://doi.org/10.1007/s15013-019-1731-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15013-019-1731-z

Navigation