Skip to main content
Log in

Liquid biopsy

Neue Biomarker für Diagnostik und Therapiemonitoring in der Onkologie

  • Fortbildung
  • Published:
gynäkologie + geburtshilfe Aims and scope

In die Tumordiagnostik kommt Bewegung. Während klassische Tumormarker bei Frühdiagnostik oder Screening nicht bedeutsam sind, erlaubt die durchflusszytometrische Bestimmung von Biomarkern in Makrophagen eine neue Form einer nicht invasiven Diagnostik („liquid biopsy“), mit der Tumoren früher erfasst und deren Malignität charakterisiert werden kann. Interessant sind zwei Biomarker, die fundamentale biophysikalische Prozesse detektieren und in allen Malignomen verändert sind. Damit wäre ein genereller Malignomnachweis („pan-cancer test“) denkbar. Noch ist der Stellenwert einer solchen Diagnostik umstritten. Einsatzmöglichkeiten bestehen bei der Früherkennung, Tumorcharakterisierung und beim Monitoring von Therapieverläufen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Measurement of intracellular versus extracellular prostate-specific antigen levels in peripheral macrophages: a new approach to noninvasive diagnosis of prostate cancer. Herwig R, Pelzer A, Horninger W, Rehder P, Klocker H, Ramoner R, Pinggera GM, Gozzi C, Konwalinka G, Bartsch G. Clin Prostate Cancer. 2004 Dec;3(3):184–8.

    Article  PubMed  Google Scholar 

  2. Analysis of circulating CD14+/CD16+ monocyte-derived macrophages (MDMs) in the peripheral blood of patients with oral squamous cell carcinoma. Grimm M, Feyen O, Coy JF, Hofmann H, Teriete P, Reinert S. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Mar;121(3):301–6.

    Article  PubMed  Google Scholar 

  3. Circulating PSA-containing macrophages as a possible target for the detection of prostate cancer: a three-color/five-parameter flow cytometric study on peripheral blood samples. Leers MP, Nap M, Herwig R, Delaere K, Nauwelaers F. Am J Clin Pathol. 2008 Apr;129(4):649–56.

    Article  PubMed  Google Scholar 

  4. CEA in activated macrophages. New diagnostic possibilities for tumor markers in early colorectal cancer. Japink D, Leers MP, Sosef MN, Nap M. Anticancer Res. 2009 Aug;29(8):3245–51.

    CAS  PubMed  Google Scholar 

  5. Activated macrophages containing tumor marker in colon carcinoma: immunohistochemical proof of a concept. Faber TJ, Japink D, Leers MP, Sosef MN, von Meyenfeldt MF, Nap M. Tumour Biol. 2012 Apr;33(2):435–41.

    Article  CAS  PubMed  Google Scholar 

  6. EDIM-TKTL1 blood test: a noninvasive method to detect upregulated glucose metabolism in patients with malignancies. Feyen O, Coy JF, Prasad V, Schierl R, Saenger J, Baum RP. Future Oncol. 2012 Oct;8(10):1349–59.

    Article  CAS  PubMed  Google Scholar 

  7. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, Muhs HJ, Munz A, Nadtotschi T, König K, Sänger J, Feyen O, Hofmann H, Reinert S, Coy JF. BMC Cancer. 2013 Dec 4;13:569.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Evaluation of a biomarker based blood test for monitoring surgical resection of oral squamous cell carcinomas. Grimm M, Kraut W, Hoefert S, Krimmel M, Biegner T, Teriete P, Cetindis M, Polligkeit J, Kluba S, Munz A, Reinert S. Clin Oral Investig. 2016 Mar;20(2):329–38.

    Article  PubMed  Google Scholar 

  9. Isolation, differential splicing and protein expression of a DNase on the human X chromosome. Coy JF, Velhagen I, Himmele R, Delius H, Poustka A, Zentgraf H. Cell Death Differ. 1996 Apr;3(2):199–206.

    CAS  PubMed  Google Scholar 

  10. Altered deoxyribonuclease activity in cancer cells and its role in non toxic adjuvant cancer therapy with mixed vitamins C and K3. Taper HS. Anticancer Res. 2008 Sep-Oct;28(5A):2727–32.

    CAS  PubMed  Google Scholar 

  11. Changes in the topological expression of markers of differentiation and apoptosis in defined stages of human cervical dysplasia and carcinoma. Zanotti S, Fisseler-Eckhoff A, Mannherz HG. Gynecol Oncol. 2003 Jun;89(3):376–84.

    Article  CAS  PubMed  Google Scholar 

  12. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes. Coy JF, Dübel S, Kioschis P, Thomas K, Micklem G, Delius H, Poustka A. Genomics. 1996 Mar 15;32(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  13. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Coy JF, Dressler D, Wilde J, Schubert P. Clin. Lab. 2005, 51(5-6):257–273.

    CAS  PubMed  Google Scholar 

  14. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF. Br J Cancer 2006, 94(4):578–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Xu X, Zur Hausen A, Coy JF, Löchelt M. Int J Cancer. 2009 Mar 15;124(6):1330–7.

    Article  CAS  PubMed  Google Scholar 

  16. TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA. Clin Cancer Res. 2010 Feb 1;16(3):857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells. Jayachandran A, Lo PH, Chueh AC, Prithviraj P, Molania R, Davalos-Salas M, Anaka M, Walkiewicz M, Cebon J, Behren A. BMC Cancer. 2016 Feb 22;16(1):134.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Über den Stoffwechsel der Carcinomzelle. Warburg O, Posener K, Negelein E. Biochem Z 1924; 152:309–44

    CAS  Google Scholar 

  19. Transketolase-like protein 1 confers resistance to serum withdrawal in vitro. Hartmannsberger D, Mack B, Eggert C, Denzel S, Stepp H, Betz CS, Gires O. Cancer Lett. 2011 Jan 1;300(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  20. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Rolland AD1, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, Evrard B, Rioux-Leclercq N, Auger J, Pineau C. Hum Reprod. 2013 Jan;28(1):199–209.

    Article  CAS  PubMed  Google Scholar 

  21. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Li B, Iglesias-Pedraz JM, Chen LY, Yin F, Cadenas E, Reddy S, Comai L. Aging Cell. 2014 Apr;13(2):367–78.

    Article  CAS  PubMed  Google Scholar 

  22. Cancer proliferation and therapy: the Warburg effect and quantum metabolism. Demetrius LA, Coy JF, Tuszynski JA. Theor Biol Med Model. 2010 Jan 19;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Vaughn AE, Deshmukh M. Nat Cell Biol. 2008 Dec;10(12):1477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. The complete genome sequence of a Neanderthal from the Altai Mountains. Prüfer K, et al., 2013. Nature. 2014 Jan 2;505(7481):43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Expression of Transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy. Schwaab J, Horisberger K, Ströbel P, Bohn B, Gencer D, Kähler G, Kienle P, Post S, Wenz F, Hofmann WK, Hofheinz RD, Erben P. BMC Cancer. 2011 Aug 19;11:363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression. Kayser G, Sienel W, Kubitz B, Mattern D, Stickeler E, Passlick B, Werner M, Zur Hausen A. Pathology. 2011 Dec;43(7):719–24.

    Article  PubMed  Google Scholar 

  27. Expression of transketolase-like 1 (TKTL1) and p-Akt correlates with the progression of cervical neoplasia. Kohrenhagen N, Voelker HU, Schmidt M, Kapp M, Krockenberger M, Frambach T, Dietl J, Kammerer U. J Obstet Gynaecol Res. 2008 Jun;34(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  28. Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. Chen H, Yue JX, Yang SH, Ding H, Zhao RW, Zhang S. J Exp Clin Cancer Res. 2009 Mar 30;28:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M. Blood. 2007 May 1;109(9):3812–9.

    Article  CAS  PubMed  Google Scholar 

  30. Diagnostic use of epitope detection in monocytes blood test for early detection of colon cancer metastasis. Jansen N, Coy JF. Future Oncol. 2013 Apr;9(4):605–9.

    Article  CAS  PubMed  Google Scholar 

  31. Monitoring carcinogenesis in a case of oral squamous cell carcinoma using a panel of new metabolic blood biomarkers as liquid biopsies. Grimm M, Hoefert S, Krimmel M, Biegner T, Feyen O, Teriete P, Reinert S. Oral Maxillofac Surg. 2016 Feb 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Coy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coy, J.F. Neue Biomarker für Diagnostik und Therapiemonitoring in der Onkologie. gynäkologie + geburtshilfe 21, 20–24 (2016). https://doi.org/10.1007/s15013-016-0966-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15013-016-0966-1

Navigation