Skip to main content

Advertisement

Log in

Detection of Zika virus in urine from randomly tested individuals in Mirassol, Brazil

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Studies show that around 80% of Zika virus (ZIKV) infections are asymptomatic. The present study tested urine samples from volunteers, unsuspected of arboviral infection, which attended an emergency care unit (ECU) in Mirassol, Brazil, from March 2018 to April 2019.

Methods

The volunteers were divided into two groups. The first group was composed of outpatients who were not suspected to have an arbovirus infection. This first group was subdivided into two subgroups: outpatients with and without arbovirus-like symptoms. The second group consisted of companions of outpatients treated at the ECU. The second group was also subdivided into two subgroups: totally asymptomatic individuals and those who had arbovirus-like symptoms. RNA was extracted from urine samples, followed by RT-qPCR for ZIKV.

Results

We found that 11% (79/697) of the samples tested positive for ZIKV-RNA. Among the ZIKV-RNA-positive individuals, 16.5% (13/79) were companions, of which 61.5% (8/13) were totally asymptomatic and 38.5% (5/13) reported symptoms that could be suggestive of arbovirus infection. In addition, 83.5% (66/79) of the ZIKV-RNA-positive individuals were outpatients without a clinical diagnosis of arbovirus. Of these undiagnosed ZIKV-RNA-positive outpatients, 47% (31/66) had no arbovirus-related symptoms.

Conclusion

Our study shows the effectiveness of urine as a non-invasive sample to detect the incidence of ZIKV infection. We also highlight the importance of ZIKV molecular diagnosis to aid public health surveillance and prevention of congenital Zika syndrome and other ZIKV-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85:328–45. https://doi.org/10.1016/j.antiviral.2009.10.008.

    Article  CAS  PubMed  Google Scholar 

  2. Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20. https://doi.org/10.1016/0035-9203(52)90042-4.

    Article  CAS  PubMed  Google Scholar 

  3. Hayes EB. Zika virus outside Africa. Emerg Infect Dis. 2009;15:1347–50. https://doi.org/10.3201/eid1509.090442.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43. https://doi.org/10.1056/NEJMoa0805715.

    Article  CAS  PubMed  Google Scholar 

  5. Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, et al. Zika virus, French polynesia, South pacific, 2013. Emerg Infect Dis. 2014;20:1085–6. https://doi.org/10.3201/eid2006.140138.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN, Luz K. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz. 2015;110:569–72. https://doi.org/10.1590/0074-02760150192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Microcephaly Epidemic Research Group. Microcephaly in infants, Pernambuco State, Brazil, 2015. Emerg Infect Dis. 2016;22:1090–3. https://doi.org/10.3201/eid2206.160062.

    Article  Google Scholar 

  8. Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951–8. https://doi.org/10.1056/NEJMoa1600651.

    Article  CAS  PubMed  Google Scholar 

  9. Campos GS, Bandeira AC, Sardi SI. Zika virus outbreak, Bahia. Brazil Emerg Infect Dis. 2015;21:1885–6. https://doi.org/10.3201/eid2110.150847.

    Article  PubMed  Google Scholar 

  10. World Health Organization. WHO to convene an International Health Regulations Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations. 2016. https://www.who.int/en/news-room/detail/28-01-2016-who-to-convene-an-international-healthregulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations.

  11. Ministério da Saúde, SVS. Situação epidemiológica da síndrome congênita associada à infecção pelo vírus Zika em 2020: até a SE 25. Brasil: Ministério da Saúde; 2020. p. 45. https://www.gov.br/saude/pt-br/media/pdf/2020/dezembro/11/boletim_epidemiologico_svs_47.pdf.

  12. Ministério da Saúde. Procedimentos a serem adotados para a vigilância da Febre do vírus Zika no Brasil. 2016. https://www.conasems.org.br/wp-content/uploads/2016/03/portalsaude.saude.gov.br_images_pdf_2016_marco_07_Nota-Informativa-zika.pdf.

  13. Paz-Bailey G, Rosenberg ES, Doyle K, Munoz-Jordan J, Santiago GA, Klein L, et al. Persistence of Zika Virus in body fluids—final report. N Engl J Med. 2017;379:1234–43. https://doi.org/10.1056/NEJMoa1613108.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gourinat A-C, O’Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M. Detection of Zika virus in urine. Emerg Infect Dis. 2015;21:84–6. https://doi.org/10.3201/eid2101.140894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shinohara K, Kutsuna S, Takasaki T, Moi ML, Ikeda M, Kotaki A, et al. Zika fever imported from Thailand to Japan, and diagnosed by PCR in the urine. J Travel Med. 2016. https://doi.org/10.1093/jtm/tav011.

    Article  PubMed  Google Scholar 

  16. Bonaldo MC, Ribeiro IP, Lima NS, dos Santos AAC, Menezes LSR, da Cruz SOD, et al. Isolation of infective Zika Virus from Urine and saliva of patients in Brazil. PLoS Negl Trop Dis. 2016;10: e0004816. https://doi.org/10.1371/journal.pntd.0004816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirayama T, Mizuno Y, Takeshita N, Kotaki A, Tajima S, Omatsu T, et al. Detection of dengue virus genome in urine by real-time reverse transcriptase PCR: a laboratory diagnostic method useful after disappearance of the genome in serum. J Clin Microbiol. 2012;50:2047–52. https://doi.org/10.1128/JCM.06557-11.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barzon L, Pacenti M, Franchin E, Pagni S, Martello T, Cattai M, et al. Excretion of West Nile virus in urine during acute infection. J Infect Dis. 2013;208:1086–92. https://doi.org/10.1093/infdis/jit290.

    Article  CAS  PubMed  Google Scholar 

  19. Dibo MR, Chiaravalloti-Neto F, Battigaglia M, Mondini A, Favaro EA, Barbosa AA, et al. Identification of the best ovitrap installation sites for gravid Aedes (Stegomyia) aegypti in residences in Mirassol, state of São Paulo. Brazil Mem Inst Oswaldo Cruz. 2005;100:339–43. https://doi.org/10.1590/S0074-02762005000400001.

    Article  PubMed  Google Scholar 

  20. Ministério da Saúde. GUIA DE VIGILÂNCIA EM SAÚDE. Bull World Heath Organ. 3 ed. Brasília: Ministério da Saúde; 2019. p. 740. https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_3ed.pdf.

  21. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9. https://doi.org/10.3201/eid1408.080287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. CIIAGRO. Centro Integrado de Informações Agrometeorológicas. Instituto Agronômico, São Paulo. http://www.ciiagro.sp.gov.br/ciiagroonline/. Accessed 14 de outubro 2020.

  23. Haby MM, Pinart M, Elias V, Reveiz L. Prevalence of asymptomatic Zika virus infection: a systematic review. Bull World Health Organ. 2018;96:402–13. https://doi.org/10.2471/blt.17.201541.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Colombo TE, Estofolete CF, Reis AFN, da Silva NS, Aguiar ML, Cabrera EMS, et al. Clinical, laboratory and virological data from suspected ZIKV patients in an endemic arbovirus area. J Clin Virol. 2017;96:20–5. https://doi.org/10.1016/j.jcv.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  25. Perdigão ACB, Ramalho ILC, Guedes MIF, Braga DNM, Cavalcanti LPG, Melo MEL, et al. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases. Mem Inst Oswaldo Cruz. 2016;111:588–91. https://doi.org/10.1590/0074-02760160140.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chacon R, Clara AW, Jara J, Armero J, Lozano C, El Omeiri N, et al. Influenza illness among case-patients hospitalized for suspected dengue, El Salvador, 2012. PLoS ONE. 2015;10: e0140890. https://doi.org/10.1371/journal.pone.0140890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fernanda Estofolete C, Terzian ACB, Parreira R, Esteves A, Hardman L, Greque GV, et al. Clinical and laboratory profile of Zika virus infection in dengue suspected patients: a case series. J Clin Virol. 2016;81:25–30. https://doi.org/10.1016/j.jcv.2016.05.012.

    Article  PubMed  Google Scholar 

  28. Colombo TE, Vedovello D, Pacca-Mazaro CC, Mondini A, Araújo JP, Cabrera E, et al. Dengue virus surveillance: detection of DENV-4 in the city of São José do Rio Preto, SP. Brazil Acta Trop. 2016;164:84–9. https://doi.org/10.1016/j.actatropica.2016.09.004.

    Article  PubMed  Google Scholar 

  29. Mondini A, Bronzoni RVdM, Cardeal ILS, dos Santos TMIL, Lázaro E, Nunes SHP, et al. Simultaneous infection by DENV-3 and SLEV in Brazil. J Clin Virol. 2007;40:84–6. https://doi.org/10.1016/j.jcv.2007.06.007.

    Article  PubMed  Google Scholar 

  30. Mondini A, Cardeal ILS, Lázaro E, Nunes SH, Moreira CC, Rahal P, et al. Saint Louis Encephalitis virus, Brazil. Emerg Infect Dis. 2007;13:176. https://doi.org/10.3201/eid1301.060905.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Estofolete CF, Terzian ACB, Colombo TE, de Freitas GG, Ferraz HCJ, da Silva RA, et al. Co-infection between Zika and different Dengue serotypes during DENV outbreak in Brazil. J Infect Public Health. 2019;12:178–81. https://doi.org/10.1016/j.jiph.2018.09.007.

    Article  PubMed  Google Scholar 

  32. IBGE. Instituto Brasileiro de Geografia e Estatística. Brasil. 2021. https://www.ibge.gov.br/cidades-e-estados/sp/mirassol.html. Accessed 16 de abril de 2021.

  33. Brasil P, Calvet GA, Siqueira AM, Wakimoto M, de Sequeira PC, Nobre A, et al. Zika virus outbreak in Rio de Janeiro, Brazil: clinical characterization, epidemiological and virological aspects. PLoS Negl Trop Dis. 2016;10: e0004636. https://doi.org/10.1371/journal.pntd.0004636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharp TM, Quandelacy TM, Adams LE, Aponte JT, Lozier MJ, Ryff K, et al. Epidemiologic and spatiotemporal trends of Zika Virus disease during the 2016 epidemic in Puerto Rico. PLoS Negl Trop Dis. 2020;14: e0008532. https://doi.org/10.1371/journal.pntd.0008532.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Levorato CD, Mello LM, Silva AS, Nunes AA. Fatores associados à procura por serviços de saúde numa perspectiva relacional de gênero. Ciênc Saúde Coletiva. 2014;19:1263–74. https://doi.org/10.1590/1413-81232014194.01242013.

    Article  Google Scholar 

  36. Cerbino-Neto J, Mesquita EC, Souza TML, Parreira V, Wittlin BB, Durovni B, et al. Clinical Manifestations of Zika virus infection, Rio de Janeiro, Brazil, 2015. Emerg Infect Dis. 2016;22:1318–20. https://doi.org/10.3201/eid2207.160375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ministério da Saúde, SVS. Monitoramento dos casos de influenza no Brasil, Semanas Epidemiológicas 1 a 32 de 2019. Brasil: Ministério da Saúde; 2019. p. 1–9. https://portalarquivos2.saude.gov.br/images/pdf/2019/setembro/05/BE-21-influenza-04set19.pdf.

  38. Ministério da Saúde, SVS. Influenza: Monitoramento até a Semana Epidemiológica 28 de 2018. Brasil: Ministério da Saúde; 2018. https://antigo.saude.gov.br/images/pdf/2018/julho/19/Informe-Epidemiologico-Influenza-2018-SE-28.pdf.

  39. Araújo RAF, Uchôa NM, Alves JMB. Influência de Variáveis Meteorológicas na Prevalência das Doenças Transmitidas pelo Mosquito Aedes Aegypti. Rev Bras Meteorol. 2019;34:439–47.

    Article  Google Scholar 

  40. Kasprzykowski JI, Fukutani KF, Fabio H, Fukutani ER, Costa LC, Andrade BB, et al. A recursive sub-typing screening surveillance system detects the arising of the ZIKV African lineage in Brazil: is there risk of a new epidemic? Int J Infect Dis. 2020;96:579–81. https://doi.org/10.1016/j.ijid.2020.05.090.

    Article  CAS  PubMed  Google Scholar 

  41. Faria NR, da Silva Azevedo RdS, Kraemer MU, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352:345–9. https://doi.org/10.1126/science.aaf5036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alencar J, Mello C, Marcondes C, Guimarães AÉ, Toma H, Bastos A, et al. Natural infection and vertical transmission of two flaviviruses (Yellow fever and Zika) in mosquitoes in primary forests in the Brazilian state of Rio de Janeiro (Diptera: Culicidae). BioRxiv. 2019. https://doi.org/10.1101/688713.

    Article  Google Scholar 

  43. de Almeida PR, Ehlers LP, Demoliner M, Eisen AKA, Girardi V, De Lorenzo C, et al. Detection of a novel African-lineage-like Zika virus naturally infecting free-living neotropical primates in Southern Brazil. BioRxiv. 2019. https://doi.org/10.1101/828871.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the city of Mirassol and the director and staff of the Emergency Care Unit (ECU) from Mirassol that allowed us to conduct this study. We also thank all the participants who contributed to this study.

Funding

This study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and Grant number 2046/2016; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Grant number 440723/2016-7 and São Paulo Research Foundation (FAPESP)—Grant Number 2014/22198-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia Bittar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The Ethics Committee from São Paulo University State—UNESP approved this study (CAAE: 66489617.4.0000.5466).

Consent to participate

All volunteers signed an informed consent form before participating in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Conceição, P.J.P., de Carvalho, L.R., de Godoy, B.L.V. et al. Detection of Zika virus in urine from randomly tested individuals in Mirassol, Brazil. Infection 50, 149–156 (2022). https://doi.org/10.1007/s15010-021-01667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-021-01667-w

Keywords

Navigation