Skip to main content

Advertisement

Log in

Macrophage migration inhibitory factor − 794 CATT5−8 microsatellite polymorphism and susceptibility of tuberculosis

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

The establishment of candidate genetic determinants associated with tuberculosis (TB) is a challenge, considering the divergent frequencies among populations. The objective of this study was to evaluate the association between MIF − 794 CATT 5−8 polymorphism and susceptibility to TB.

Methods

Case–control study. Patients > 18 years, with pulmonary TB were included. The control group consisted of blood donors and household contacts, not relatives, healthy and > 18 years. MIF − 794 CATT 5−8 were genotyped using sequencing of PCR and capillary electrophoresis.

Results

126 patients and 119 controls were included. The genotype 5/5 was more frequent among cases (15.1%) than in controls (5.9%) (p = 0.019). Cases had more frequently the allele 5 (29.4%) as compared with controls (19.3%) (p = 0.010). Prevalence of 7/X + 8/X genotypes was not different between cases and controls (p = 0.821). There was no difference between patients with alleles 7 and 8 and those with alleles 5 and 6 (p = 0.608).

Conclusions

The genotype 5/5 and the allele 5 of MIF − 794 CATT 5−8 were more frequent among TB patients than in controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raviglione MC, Kochi A, Snider DE. Global Epidemiology of Tuberculosis: morbidity and Mortality of a Worldwide Epidemic. JAMA, J Am Med Assoc. 1995;273:220–6.

    Article  CAS  Google Scholar 

  2. van de Vosse E, Hoeve MA, Ottenhoff THM. Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect Dis. 2004;4:739–49.

    Article  Google Scholar 

  3. Hill A. The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet. 2001;2:373–400.

    Article  CAS  Google Scholar 

  4. Bellamy R. Genetic susceptibility to tuberculosis. Clin Chest Med. 2005;26:233–46.

    Article  Google Scholar 

  5. Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis. 1978;117:621–4.

    CAS  PubMed  Google Scholar 

  6. Vasilca V, Oana R, Munteanu D, Zugun F, Constantinescu D, Carasevici E. Phenotypes associated with tuberculosis in population from north-eastern Romania. Roum Arch Microbiol Immunol. 2019;63:209–21.

    Google Scholar 

  7. Yim J-J, Selvaraj P. Genetic susceptibility in tuberculosis. Respirology. 2010;15:241–56.

    Article  Google Scholar 

  8. Malik S, Abel L, Tooker H, Poon A, Simkin L, Girard M, et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA. 2005;102:12183–8.

    Article  CAS  Google Scholar 

  9. Dissanayeke SR, Levin S, Pienaar S, Wood K, Eley B, Beatty D, et al. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS ONE. 2009;4:e6698.

    Article  Google Scholar 

  10. Liu W, Cao WC, Zhang CY, Tian L, Wu XM, Habbema JDF, et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. Int J Tuberc Lung Dis. 2004;8:428–34.

    CAS  PubMed  Google Scholar 

  11. El Sahly HM, Reich RA, Dou SJ, Musser JM, Graviss EA. The effect of mannose binding lectin gene polymorphisms on susceptibility to tuberculosis in different ethnic groups. Scand J Infect Dis. 2004;36:106–8.

    Article  Google Scholar 

  12. Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B, Gustafson P, et al. Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci USA. 2006;103:10364–8.

    Article  CAS  Google Scholar 

  13. Velez DR, Hulme WF, Myers JL, Weinberg JB, Levesque MC, Stryjewski ME, et al. NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans. Hum Genet. 2009;126:643–53.

    Article  CAS  Google Scholar 

  14. Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets. 2016;20:1463–75.

    Article  CAS  Google Scholar 

  15. O’garra A, Redford PS, Mcnab FW, Bloom CI, Wilkinson RJ, Berry MPR. The Immune Response in Tuberculosis. 2013 [cited 2020 May 21]; Available from: www.annualreviews.org.

  16. Donn R, Alourfi Z, De Benedetti F, Meazza C, Zeggini E, Lunt M, et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:2402–9.

    Article  CAS  Google Scholar 

  17. Gómez LM, Sánchez E, Ruiz-Narvaez EA, López-Nevot MA, Anaya JM, Martín J. Macrophage migration inhibitory factor gene influences the risk of developing tuberculosis in northwestern Colombian population. Tissue Antigens. 2007;70:28–33.

    Article  Google Scholar 

  18. Kuai SG, Ou QF, You DH, Shang ZB, Wang J, Liu J, et al. Functional polymorphisms in the gene encoding macrophage migration inhibitory factor (MIF) are associated with active pulmonary tuberculosis. Infect Dis (Auckl). 2016;48:222–8.

    Article  CAS  Google Scholar 

  19. Liu A, Bao F, Voravuthikunchai SP. CATT polymorphism in MIF gene promoter is closely related to human pulmonary tuberculosis in a southwestern China population. Int J Immunopathol Pharmacol. 2018;32:2058738418777108.

    PubMed  PubMed Central  Google Scholar 

  20. Ma M, Tao L, Liu A, Liang Z, Yang J, Peng Y, et al. Macrophage migration inhibitory factor-794 catt microsatellite polymorphism and risk of tuberculosis: a meta-analysis. Biosci Rep. 2018;38:1–10.

    CAS  Google Scholar 

  21. Li Y, Yuan T, Lu W, Chen M, Cheng X, Deng S. Association of tuberculosis and polymorphisms in the promoter region of macrophage migration inhibitory factor (MIF) in a Southwestern China Han population. Cytokine. 2012;60:64–7. https://doi.org/10.1016/j.cyto.2012.06.010.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Zeng Z, Deng S. Study of the relationship between human MIF level, MIF-794CATT5-8 microsatellite polymorphism, and susceptibility of tuberculosis in Southwest China. Braz J Infect Dis. Brazil. 2012;16:383–6.

    Article  Google Scholar 

  23. Calandra T, Froidevaux C, Martin C, Roger T. Macrophage migration inhibitory factor and host innate immune defenses against bacterial sepsis. J Infect Dis. 2003;187(Suppl 2):S385–90.

    Article  CAS  Google Scholar 

  24. Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, et al. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci USA. 1996;93:7849–54.

    Article  CAS  Google Scholar 

  25. Martínez A, Orozco G, Varadé J, Sánchez López M, Pascual D, Balsa A, et al. Macrophage migration inhibitory factor gene: influence on rheumatoid arthritis susceptibility. Hum Immunol. 2007;68:744–7.

    Article  Google Scholar 

  26. Kibiki GS, van der Ven AJAM, Geurts-Moespot A, Shao J, Calandra T, Sweep FCGJ, et al. Serum and BAL macrophage migration inhibitory factor levels in HIV infected Tanzanians with pulmonary tuberculosis or other lung diseases. Clin Immunol. 2007;123:60–5.

    Article  CAS  Google Scholar 

  27. Vannberg FO, Chapman SJ, Hill AVS. Human genetic susceptibility to intracellular pathogens. Immunol Rev. 2011;240:105–16.

    Article  CAS  Google Scholar 

  28. Berrington WR, Hawn TR. Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter?.

  29. Saúde S de V em S| M da. Boletim Epidemiológico—Tuberculose 2020 [Internet]. 2020. https://www.saude.gov.br/images/pdf/2020/marco/24/Boletim-tuberculose-2020-marcas–1-.pdf.

  30. Conde MB, Melo FAF de, Marques AMC, Cardoso NC, Pinheiro VGF, Dalcin P de TR, et al. III Brazilian Thoracic Association Guidelines on tuberculosis. J Bras Pneumol 2009;35:1018–48.

  31. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KPWJ, Sirugo G, et al. Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med. 2008;178:203–7.

    Article  CAS  Google Scholar 

  32. Bellamy R, Beyers N, McAdam KPWJ, Ruwende C, Gie R, Samaai P, et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA. 2000;97:8005–9.

    Article  CAS  Google Scholar 

  33. Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J, et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun. 2009;10:77–83.

    Article  CAS  Google Scholar 

  34. Möller M, Hoal EG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb). 2010;90:71–83.

    Article  Google Scholar 

  35. Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J, et al. Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet. 2012;57:363–7.

    Article  CAS  Google Scholar 

  36. Png E, Alisjahbana B, Sahiratmadja E, Marzuki S, Nelwan R, Balabanova Y, et al. A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians. BMC Med Genet. 2012;13:5.

    Article  CAS  Google Scholar 

  37. Temple SEL, Cheong KY, Price P, Waterer GW. The microsatellite, macrophage migration inhibitory factor -794, may influence gene expression in human mononuclear cells stimulated with E. coli or S. pneumoniae. Int J Immunogenet. 2008;35:309–16.

    Article  CAS  Google Scholar 

  38. Zhong X-B, Leng L, Beitin A, Chen R, Mcdonald C, Hsiao B, et al. Simultaneous detection of microsatellite repeats and SNPs in the macrophage migration inhibitory factor (MIF) gene by thin-film biosensor chips and application to rural field studies.

  39. Stead WW, Senner JW, Reddick WT, Lofgren JP. Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med. 1990;322:422–7.

    Article  CAS  Google Scholar 

  40. Das R, Koo MS, Kim BH, Jacob ST, Subbian S, Yao J, et al. Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2013;110(32):E2997–3006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Denise Rossato Silva was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - National Council for Scientific and Technological Development) and Fundo de Incentivo à Pesquisa do Hospital de Clínicas de Porto Alegre (FIPE-HCPA), grant number: 160599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Rossato Silva.

Ethics declarations

Conflict of interest

none.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, F.D., Gehlen, M., Caron, V.S. et al. Macrophage migration inhibitory factor − 794 CATT5−8 microsatellite polymorphism and susceptibility of tuberculosis. Infection 49, 457–461 (2021). https://doi.org/10.1007/s15010-020-01562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-020-01562-w

Keywords

Navigation