Infection

pp 1–10 | Cite as

Management of superficial and deep-seated Staphylococcus aureus skin and soft tissue infections in sub-Saharan Africa: a post hoc analysis of the StaphNet cohort

  • Abraham Alabi
  • Theckla Kazimoto
  • Marthe Lebughe
  • Delfino Vubil
  • Patrick Phaku
  • Inacio Mandomando
  • Winfried V. Kern
  • Salim Abdulla
  • Alexander Mellmann
  • Lena Peitzmann
  • Markus Bischoff
  • Georg Peters
  • Mathias Herrmann
  • Martin P. Grobusch
  • Frieder Schaumburg
  • Siegbert Rieg
Original Paper

Abstract

Purpose

The incidence of Staphylococcus aureus skin and soft tissue infection (SSTI) is high in sub-Saharan Africa. This is fueled by a high prevalence of Panton-Valentine leukocidin (PVL), which can be associated with necrotizing disease. The aim was to describe the clinical presentation and the treatment of SSTI in the African setting and to identify challenges in the management.

Methods

Patients (n = 319) were recruited in DR Congo (n = 56, 17.6%), Gabon (n = 89, 27.9%), Mozambique (n = 79, 24.8%) and Tanzania (n = 95, 29.8%) during the prospective observational StaphNet cohort study (2010–2015). A physician recorded the clinical management in standardized questionnaires and stratified the entity of SSTI into superficial (sSSTI) or deep-seated (dSSTI). Selected virulence factors (PVL, β hemolysin) and multilocus sequence types (MLST) were extracted from whole genome sequencing data.

Results

There were 220/319 (69%) sSSTI and 99/319 (31%) dSSTI. Compared to sSSTI, patients with dSSTI were more often hospitalized (13.2 vs. 23.5%, p = 0.03), HIV-positive (7.6 vs. 15.9%, p = 0.11), and required more often incision and drainage (I&D, 45.5 vs. 76.5%, p = 0.04). The proportion of an adequate antimicrobial therapy increased marginally from day 1 (empirical therapy) to day 3 (definite therapy), for sSSTI (70.7 to 72.4%) and dSSTI (55.4 to 58.9%). PVL was a risk factor for I&D (OR = 1.7, p = 0.02) and associated with MLST clonal complex CC121 (OR = 2.7, p < 0.001).

Conclusion

Appropriate antimicrobial agents and surgical services to perform I&D were available for the majority of patients. Results from susceptibility testing should be considered more efficiently in the selection of antimicrobial therapy.

Keywords

Staphylococcus aureus Skin and soft tissue infection Sub-Saharan Africa Management Microbiology 

Notes

Acknowledgements

This study received grants from the Deutsche Forschungsgemeinschaft (HE 1850/11-1 to M.H., KE 700/3-1 to W.V.K., ME 3205/4-1 to A.M., and PE 296/6-1 to G.P.).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.  https://doi.org/10.1128/cmr.00134-14.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hersh AL, Chambers HF, Maselli JH, Gonzales R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med. 2008;168:1585–91.  https://doi.org/10.1001/archinte.168.14.1585.CrossRefPubMedGoogle Scholar
  3. 3.
    Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59:e10–52.  https://doi.org/10.1093/cid/ciu444.CrossRefPubMedGoogle Scholar
  4. 4.
    Otto M. Phenol-soluble modulins. Int J Med Microbiol. 2014;304:164–9.  https://doi.org/10.1016/j.ijmm.2013.11.019.CrossRefPubMedGoogle Scholar
  5. 5.
    Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:43–54.  https://doi.org/10.1016/S1473-3099(12)70238-4.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ruffing U, Alabi A, Kazimoto T, Vubil DC, Akulenko R, Abdulla S, et al. Community-associated Staphylococcus aureus from Sub-Saharan Africa and Germany: a cross-sectional geographic correlation study. Sci Rep. 2017;7:154.  https://doi.org/10.1038/s41598-017-00214-8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Horner C, Utsi L, Coole L, Denton M. Epidemiology and microbiological characterization of clinical isolates of Staphylococcus aureus in a single healthcare region of the UK, 2015. Epidemiol Infect. 2017;145:386–96.  https://doi.org/10.1017/s0950268816002387.CrossRefPubMedGoogle Scholar
  8. 8.
    Schaumburg F, Alabi AS, Peters G, Becker K. New epidemiology of Staphylococcus aureus infection in Africa. Clin Microbiol Infect. 2014;20:589–96.  https://doi.org/10.1111/1469-0691.12690.CrossRefPubMedGoogle Scholar
  9. 9.
    Schaumburg F, Alabi AS, Mombo-Ngoma G, Kaba H, Zoleko RM, Diop DA, et al. Transmission of Staphylococcus aureus between mothers and infants in an African setting. Clin Microbiol Infect. 2014;20:O390–6.  https://doi.org/10.1111/1469-0691.12417.CrossRefPubMedGoogle Scholar
  10. 10.
    Gutierrez K, Halpern MS, Sarnquist C, Soni S, Arroyo AC, Maldonado Y. Staphylococcal infections in children, California, USA, 1985–2009. Emerg Infect Dis. 2013;19:10–20.  https://doi.org/10.3201/eid1901.111740 (quiz 185).
  11. 11.
    Nurjadi D, Friedrich-Jänicke B, Schäfer J, Van Genderen PJJ, Goorhuis A, Perignon A, et al. Skin and soft tissue infections in intercontinental travellers and the import of multi-resistant Staphylococcus aureus to Europe. Clin Microbiol Infect. 2015;21:e1–10.  https://doi.org/10.1016/j.cmi.2015.01.016.CrossRefGoogle Scholar
  12. 12.
    Lebughe M, Phaku P, Niemann S, Mumba D, Peters G, Muyembe-Tamfum J-J et al. The impact of the Staphylococcus aureus virulome on infection in a developing country: a cohort study. Front Microbiol. 2017;8.  https://doi.org/10.3389/fmicb.2017.01662.
  13. 13.
    Li T, Yu X, Xie J, Xu Y, Shang Y, Liu Y, et al. Carriage of virulence factors and molecular characteristics of Staphylococcus aureus isolates associated with bloodstream, and skin and soft tissue infections in children. Epidemiol Infect. 2013;141:2158–62.  https://doi.org/10.1017/s0950268812002919.CrossRefPubMedGoogle Scholar
  14. 14.
    Herrmann M, Abdullah S, Alabi A, Alonso P, Friedrich AW, Fuhr G, et al. Staphylococcal disease in Africa: another neglected ‘tropical’ disease. Future Microbiol. 2013;8:17–26.  https://doi.org/10.2217/fmb.12.126.CrossRefPubMedGoogle Scholar
  15. 15.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.  https://doi.org/10.1097/01.ccm.0000050454.01978.3b.CrossRefPubMedGoogle Scholar
  16. 16.
    Institute Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. 27th ed. Wayne: CLSI; 2017.Google Scholar
  17. 17.
    Strauss L, Ruffing U, Abdulla S, Alabi A, Akulenko R, Garrine M, et al. Detecting Staphylococcus aureus virulence and resistance genes: a comparison of whole-genome sequencing and DNA microarray technology. J Clin Microbiol. 2016;54:1008–16.  https://doi.org/10.1128/JCM.03022-15.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Strauss L, Stegger M, Akpaka PE, Alabi A, Breurec S, Coombs G, et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc Natl Acad Sci USA. 2017.  https://doi.org/10.1073/pnas.1702472114.Google Scholar
  19. 19.
    Egyir B, Guardabassi L, Sorum M, Nielsen SS, Kolekang A, Frimpong E, et al. Molecular epidemiology and antimicrobial susceptibility of clinical Staphylococcus aureus from healthcare institutions in Ghana. PLOS One. 2014;9:e89716.  https://doi.org/10.1371/journal.pone.0089716.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nurjadi D, Olalekan AO, Layer F, Shittu AO, Alabi A, Ghebremedhin B, et al. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. J Antimicrob Chemother. 2014;69:2361–8.  https://doi.org/10.1093/jac/dku174.CrossRefPubMedGoogle Scholar
  21. 21.
    Watanabe S, Ohnishi T, Yuasa A, Kiyota H, Iwata S, Kaku M, et al. The first nationwide surveillance of antibacterial susceptibility patterns of pathogens isolated from skin and soft-tissue infections in dermatology departments in Japan. J Infect Chemother. 2017;23:503–11.  https://doi.org/10.1016/j.jiac.2017.05.006.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Y, Xu Z, Yang Z, Sun J, Ma L. Characterization of community-associated Staphylococcus aureus from skin and soft-tissue infections: a multicenter study in China. Emerg Microbes Infect. 2016;5:e127.  https://doi.org/10.1038/emi.2016.128.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, Gonzalez IJ, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17:616.  https://doi.org/10.1186/s12879-017-2713-1.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Frean J, Perovic O, Fensham V, McCarthy K, von Gottberg A, de Gouveia L, et al. External quality assessment of national public health laboratories in Africa, 2002-2009. Bull World Health Organ. 2012;90:191–9.  https://doi.org/10.2471/blt.11.091876.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Barbé B, Yansouni CP, Affolabi D, Jacobs J. Implementation of quality management for clinical bacteriology in low-resource settings. Clin Microbiol Infect. 2017;23:426–33.  https://doi.org/10.1016/j.cmi.2017.05.007.CrossRefPubMedGoogle Scholar
  26. 26.
    Cox JA, Vlieghe E, Mendelson M, Wertheim H, Ndegwa L, Villegas MV, et al. Antibiotic stewardship in low- and middle-income countries: the same but different? Clin Microbiol Infect. 2017;23:812–8.  https://doi.org/10.1016/j.cmi.2017.07.010.CrossRefPubMedGoogle Scholar
  27. 27.
    Nelson CE, Chen A, McAndrew L, Tay KY, Balamuth F. Management of skin and soft-tissue infections before and after clinical pathway implementation. Clin Pediatr (Phila). 2017:9922817738329.  https://doi.org/10.1177/0009922817738329.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Recherches Médicales de Lambaréné (CERMEL)Albert Schweitzer HospitalLambarénéGabon
  2. 2.Institut für TropenmedizinEberhard Karls UniversitätTübingenGermany
  3. 3.German Centre for Infection Research (DZIF)Partner Site TübingenTübingenGermany
  4. 4.Ifakara Health Institute (IHI)Dar es SalaamTanzania
  5. 5.Institut National de Recherche Bio-Médicale (INRB)Université de KinshasaKinshasaDemocratic Republic of the Congo
  6. 6.Manhiça Health Research CenterMaputoMozambique
  7. 7.Instituto Nacional de SaúdeMinistério da SaúdeMaputoMozambique
  8. 8.Division of Infectious Diseases, Department of Medicine II, Medical CenterUniversity of Freiburg Faculty of Medicine, University of FreiburgFreiburgGermany
  9. 9.Institute of HygieneUniversity Hospital MünsterMünsterGermany
  10. 10.Institute of Medical Microbiology and HygieneSaarland UniversityHomburgGermany
  11. 11.Institute of Medical MicrobiologyUniversity Hospital MünsterMünsterGermany
  12. 12.Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel MedicineUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations