Skip to main content

Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection

Abstract

Background

Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment.

Methods

We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis.

Results

Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone.

Conclusion

This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25:264–96.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Shiadeh MN, Niyyati M, Fallahi S, Rostami A. Human parasitic protozoan infection to infertility: a systematic review. Parasitol Res. 2016;115:469–77.

    PubMed  Article  Google Scholar 

  3. Rostami A, Riahi SM, Fakhri Y, Saber V, Hanifehpour H, Valizadeh S, Gholizadeh M, Pouya RH, Gamble HR. The global seroprevalence of Toxoplasma gondii among wild boars: a systematic review and meta-analysis. Vet Parasitol. 2017;244:12–20.

    PubMed  Article  Google Scholar 

  4. Siyadatpanah A, Tabatabaei F, Zeydi AE, Spotin A, Fallah-Omrani V, Assadi M, Moradi S, Rostami A, Memari F, Hajialiani F. Parasitic contamination of raw vegetables in Amol, North of Iran. Arch Clin Infect Dis. 2013;8:e15983.

    Article  Google Scholar 

  5. Shiadeh MN, Rostami A, Pearce B, Gholipourmalekabadi M, Newport D, Danesh M, Mehravar S, Seyyedtabaei S. The correlation between Toxoplasma gondii infection and prenatal depression in pregnant women. Eur J Clin Microbiol Infect Dis. 2016;35:1829–35.

    Article  Google Scholar 

  6. Rostami A, Keshavarz H, Shojaee S, Mohebali M, Meamar AR. Frequency of Toxoplasma gondii in HIV positive patients from west of Iran by ELISA and PCR. Iran J Parasitol. 2014;9:474.

    PubMed  PubMed Central  Google Scholar 

  7. Rostami A, Seyyedtabaei S, Aghamolaie S, Behniafar H, Lasjerdi Z, Abdolrasouli A, Mehravar S, Alvarado-esquivel C. Seroprevalence and risk factors associated with Toxoplasma gondii infection among rural communities in northern IRAN. Revista do Instituto de Medicina Tropical de São Paulo. 2016;58:70.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Shiadeh MN, Moghadam ZB, Adam I, Saber V, Bagheri M, Rostami A. Human infectious diseases and risk of preeclampsia: an updated review of the literature. Infection. 2017;45:589–600.

    Article  Google Scholar 

  9. Fallahi S, Rostami A, Shiadeh MN, Behniafar H, Paktinat S. A literature review on maternal–fetal and reproductive disorders of Toxoplasma gondii infection. J Gynecol Obstet Hum Reprod. 2017;. https://doi.org/10.1016/j.jogoh.2017.12.003.

    PubMed  Article  Google Scholar 

  10. Fallahi S, Rostami A, Birjandi M, Zebardast N, Kheirandish F, Spotin A. Parkinson’s disease and Toxoplasma gondii infection: sero-molecular assess the possible link among patients. Acta Trop. 2017;173:97–101.

    PubMed  Article  Google Scholar 

  11. Pomares C, Montoya JG. Laboratory diagnosis of congenital toxoplasmosis. J Clin Microbiol. 2016;54:2448–54.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Liu Q, Wang Z-D, Huang S-Y, Zhu X-Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites Vectors. 2015;8:1.

    Article  CAS  Google Scholar 

  13. Montoya JG. Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis. 2002;185:S73–82.

    PubMed  Article  Google Scholar 

  14. Zhang K, Lin G, Han Y, Li J. Serological diagnosis of toxoplasmosis and standardization. Clin Chim Acta. 2016;461:83–9.

    PubMed  Article  CAS  Google Scholar 

  15. Remington JS, Thulliez P, Montoya JG. Recent developments for diagnosis of toxoplasmosis. J Clin Microbiol. 2004;42:941–5.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Petersen E, Borobio MV, Guy E, Liesenfeld O, Meroni V, Naessens A, Spranzi E, Thulliez P. European multicenter study of the LIAISON automated diagnostic system for determination of Toxoplasma gondii-specific immunoglobulin G (IgG) and IgM and the IgG avidity index. J Clin Microbiol. 2005;43:1570–4.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Gharavi M, Oormazdi H, Roointan E. A comparative study on sensitivity and specificity of conventional and unconventional IgG and IgM assays for diagnosis of toxoplasmosis. Iran J Public Health. 2008;37:42–5.

    Google Scholar 

  18. Peng D, Hu S, Hua Y, Xiao Y, Li Z, Wang X, Bi D. Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays. Vet Immunol Immunopathol. 2007;117:17–25.

    PubMed  Article  CAS  Google Scholar 

  19. Wang Y-H, Li X-R, Wang G-X, Yin H, Cai X-P, Fu B-Q, Zhang D-L. Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens. Parasitol Int. 2011;60:105–7.

    PubMed  Article  CAS  Google Scholar 

  20. Desmonts G, Naot Y, Remington J. Immunoglobulin M-immunosorbent agglutination assay for diagnosis of infectious diseases: diagnosis of acute congenital and acquired Toxoplasma infections. J Clin Microbiol. 1981;14:486–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Remington JS, Eimstad WM, Araujo FG. Detection of immunoglobulin M antibodies with antigen-tagged latex particles in an immunosorbent assay. J Clin Microbiol. 1983;17:939–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Ferra B, Holec-Gąsior L, Kur J. Serodiagnosis of Toxoplasma gondii infection in farm animals (horses, swine, and sheep) by enzyme-linked immunosorbent assay using chimeric antigens. Parasitol Int. 2015;64:288–94.

    PubMed  Article  CAS  Google Scholar 

  23. Holec-Gąsior L. Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis—the current status of studies. Clin Vaccine Immunol. 2013;20(9):1343–51.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Liesenfeld O, Press C, Montoya JG, Gill R, Isaac-Renton JL, Hedman K, Remington JS. False-positive results in immunoglobulin M (IgM) toxoplasma antibody tests and importance of confirmatory testing: the Platelia Toxo IgM test. J Clin Microbiol. 1997;35:174–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen X-G, Gong Y, Lun Z-R, Fung M-C. High-level expression and purification of immunogenic recombinant SAG1 (P30) of Toxoplasma gondii in Escherichia coli. Protein Expr Purif. 2001;23:33–7.

    PubMed  Article  CAS  Google Scholar 

  26. Kotresha D, Poonam D, Muhammad Hafiznur Y, Saadatnia G, Nurulhasanah O, Sabariah O, Tan S, Izzati Zahidah A, Rahmah N. Recombinant proteins from new constructs of SAG1 and GRA7 sequences and their usefulness to detect acute toxoplasmosis. Trop Biomed. 2012;29:129–37.

    PubMed  CAS  Google Scholar 

  27. Prince JB, Auer KL, Huskinson J, Parmley SF, Araujo FG, Remington JS. Cloning, expression, and cDNA sequence of surface antigen P22 from Toxoplasma gondii. Mol Biochem Parasitol. 1990;43:97–106.

    PubMed  Article  CAS  Google Scholar 

  28. Pa Myjak. Efficient production of the Toxoplasma gondii GRA6, p35 and SAG2 recombinant antigens and their applications in the serodiagnosis of toxoplasmosis. Acta Parasitol. 2005;50:249–54.

    Google Scholar 

  29. Khanaliha K, Motazedian M, Sarkari B, Bandehpour M, Sharifnia Z, Kazemi B. Expression and purification of P43 Toxoplasma gondii surface antigen. Iran J Parasitol. 2012;7:48–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Ferra B, Holec-Gąsior L, Kur J. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins—impact of immunodominant sequences size on its diagnostic usefulness. Parasitol Res. 2015;114:3291–9.

    PubMed  PubMed Central  Article  Google Scholar 

  31. Hiszczyńska-Sawicka E, Brillowska-Dąbrowska A, Dąbrowski S, Pietkiewicz H, Myjak P, Kur J. High yield expression and single-step purification of Toxoplasma gondii SAG1, GRA1, and GRA7 antigens in Escherichia coli. Protein Expr Purif. 2003;27:150–7.

    PubMed  Article  Google Scholar 

  32. Holec-Gąsior L, Kur J, Hiszczyńska-Sawicka E. GRA2 and ROP1 recombinant antigens as potential markers for detection of Toxoplasma gondii-specific immunoglobulin G in humans with acute toxoplasmosis. Clin Vaccine Immunol. 2009;16:510–4.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Ching XT, Lau YL, Fong MY, Nissapatorn V. Evaluation of Toxoplasma gondii-recombinant dense granular protein (GRA2) for serodiagnosis by western blot. Parasitol Res. 2013;112:1229–36.

    PubMed  Article  Google Scholar 

  34. Mevelec M-N, Chardès T, Mercereau-Puijalon O, Bourguin I, Achbarou A, Dubremetz J-F, Bout D. Molecular cloning of GRA4, a Toxoplasma gondii dense granule protein, recognized by mucosal IgA antibodies. Mol Biochem Parasitol. 1992;56:227–38.

    PubMed  Article  CAS  Google Scholar 

  35. Holec-Gąsior L, Kur J. Toxoplasma gondii: recombinant GRA5 antigen for detection of immunoglobulin G antibodies using enzyme-linked immunosorbent assay. Exp Parasitol. 2010;124:272–8.

    PubMed  Article  CAS  Google Scholar 

  36. Lecordier L, Moleon-Borodowsky I, Dubremetz J-F, Tourvieille B, Mercier C, Deslée D, Capron A, Cesbron-Delauw M-F. Characterization of a dense granule antigen of Toxoplasma gondii (GRA6) associated to the network of the parasitophorous vacuole. Mol Biochem Parasitol. 1995;70:85–94.

    PubMed  Article  CAS  Google Scholar 

  37. Redlich A, Müller WA. Serodiagnosis of acute toxoplasmosis using a recombinant form of the dense granule antigen GRA6 in an enzyme-linked immunosorbent assay. Parasitol Res. 1998;84:700–6.

    PubMed  Article  CAS  Google Scholar 

  38. Selseleh M, Keshavarz H, Mohebali M, Shojaee S, Selseleh M, Eshragian MR, Mansouri F, Modarressi MH. Production and evaluation of Toxoplasma gondii recombinant GRA7 for serodiagnosis of human infections. Korean J Parasitol. 2012;50:233–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Arab-Mazar Z, Fallahi S, Koochaki A, Haghighi A, Tabaei SJS. Immunodiagnosis and molecular validation of Toxoplasma gondii-recombinant dense granular (GRA) 7 protein for the detection of toxoplasmosis in patients with cancer. Microbiol Res. 2016;183:53–9.

    PubMed  Article  CAS  Google Scholar 

  40. Holec L, Gąsior A, Brillowska-Dąbrowska A, Kur J. Toxoplasma gondii: enzyme-linked immunosorbent assay using different fragments of recombinant microneme protein 1 (MIC1) for detection of immunoglobulin G antibodies. Exp Parasitol. 2008;119:1–6.

    PubMed  Article  CAS  Google Scholar 

  41. Kotresha D, Noordin R. Recombinant proteins in the diagnosis of toxoplasmosis. Apmis. 2010;118:529–42.

    PubMed  CAS  Google Scholar 

  42. Holec L, Hiszczyńska-Sawicka E, Gąsior A, Brillowska-Dąbrowska A, Kur J. Use of MAG1 recombinant antigen for diagnosis of Toxoplasma gondii infection in humans. Clin Vaccine Immunol. 2007;14:220–5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Van Gelder P, Bosman F, De Meuter F, Van Heuverswyn H, Hérion P. Serodiagnosis of toxoplasmosis by using a recombinant form of the 54-kilodalton rhoptry antigen expressed in Escherichia coli. J Clin Microbiol. 1993;31:9–15.

    PubMed  PubMed Central  Google Scholar 

  44. Martin V, Arcavi M, Santillan G, Amendoeira MRR, Neves EDS, Griemberg G, Guarnera E, Garberi JC, Angel SO. Detection of human Toxoplasma-specific immunoglobulins A, M, and G with a recombinant Toxoplasma gondii rop2 protein. Clin Diagn Lab Immunol. 1998;5:627–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Holec-Gąsior L, Ferra B, Czechowska J, Serdiuk IE, Krzymiński K, Kur J. A novel chemiluminescent immunoassay for detection of Toxoplasma gondii IgG in human sera. Diagn Microbiol Infect Dis. 2016;85:422–5.

    PubMed  Article  CAS  Google Scholar 

  46. Pfrepper K-I, Enders G, Gohl M, Krczal D, Hlobil H, Wassenberg D, Soutschek E. Seroreactivity to and avidity for recombinant antigens in toxoplasmosis. Clin Diagn Lab Immunol. 2005;12:977–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Beghetto E, Buffolano W, Spadoni A, Del Pezzo M, Di Cristina M, Minenkova O, Petersen E, Felici F, Gargano N. Use of an immunoglobulin G avidity assay based on recombinant antigens for diagnosis of primary Toxoplasma gondii infection during pregnancy. J Clin Microbiol. 2003;41:5414–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Marcolino P, Silva D, Leser P, Camargo M, Mineo J. Molecular markers in acute and chronic phases of human toxoplasmosis: determination of immunoglobulin G avidity by Western blotting. Clin Diagn Lab Immunol. 2000;7:384–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Huang X, Xuan X, Hirata H, Yokoyama N, Xu L, Suzuki N, Igarashi I. Rapid immunochromatographic test using recombinant SAG2 for detection of antibodies against Toxoplasma gondii in cats. J Clin Microbiol. 2004;42:351–3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Terkawi MA, Kameyama K, Rasul NH, Xuan X, Nishikawa Y. Development of an immunochromatographic assay based on dense granule protein 7 for serological detection of Toxoplasma gondii infection. Clin Vaccine Immunol. 2013;20:596–601.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Meek B, Diepersloot RJ, van Gool T, Speijer D, Peek R. IgM recognition of recombinant Toxoplasma gondii antigens by sera of acutely or latently infected humans. Diagn Microbiol Infect Dis. 2003;45:45–52.

    PubMed  Article  CAS  Google Scholar 

  52. Holec-Gasior L, Drapala D, Lautenbach D, Kuri J. Toxoplasma gondii: usefulness of ROP1 recombinant antigen in an immunoglobulin G avidity assay for diagnosis of acute toxoplasmosis in humans. Pol J Microbiol. 2010;59:307–10.

    PubMed  CAS  Google Scholar 

  53. Elyasi H, Babaie J, Fricker-Hidalgo H, Brenier-Pinchart M-P, Zare M, Sadeghiani G, Assmar M, Pelloux H, Golkar M. Use of dense granule antigen GRA6 in an immunoglobulin G avidity test to exclude acute Toxoplasma gondii infection during pregnancy. Clin Vaccine Immunol. 2010;17:1349–55.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Pietkiewicz H, Hiszczyńska-Sawicka E, Kur J, Petersen E, Nielsen H, Paul M, Stankiewicz M, Myjak P. Usefulness of Toxoplasma gondii recombinant antigens (GRA1, GRA7 and SAG1) in an immunoglobulin G avidity test for the serodiagnosis of toxoplasmosis. Parasitol Res. 2007;100:333–7.

    PubMed  Article  CAS  Google Scholar 

  55. Aubert D, Maine G, Villena I, Hunt J, Howard L, Sheu M, Brojanac S, Chovan L, Nowlan S, Pinon J. Recombinant antigens to detect Toxoplasma gondii-specific immunoglobulin G and immunoglobulin M in human sera by enzyme immunoassay. J Clin Microbiol. 2000;38:1144–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Pietkiewicz H, Hiszczyńska-Sawicka E, Kur J, Petersen E, Nielsen H, Stankiewicz M, Andrzejewska I, Myjak P. Usefulness of Toxoplasma gondii-specific recombinant antigens in serodiagnosis of human toxoplasmosis. J Clin Microbiol. 2004;42:1779–81.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Buffolano W, Beghetto E, Del Pezzo M, Spadoni A, Di Cristina M, Petersen E, Gargano N. Use of recombinant antigens for early postnatal diagnosis of congenital toxoplasmosis. J Clin Microbiol. 2005;43:5916–24.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Li S, Galvan G, Araujo FG, Suzuki Y, Remington JS, Parmley S. Serodiagnosis of recently acquired Toxoplasma gondii infection using an enzyme-linked immunosorbent assay with a combination of recombinant antigens. Clin Diagn Lab Immunol. 2000;7:781–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Drapała D, Holec-Gąsior L, Kur J, Ferra B, Hiszczyńska-Sawicka E, Lautenbach D. A new human IgG avidity test, using mixtures of recombinant antigens (rROP1, rSAG2, rGRA6), for the diagnosis of difficult-to-identify phases of toxoplasmosis. Diagn Microbiol Infect Dis. 2014;79:342–6.

    PubMed  Article  CAS  Google Scholar 

  60. Maksimov P, Zerweck J, Maksimov A, Hotop A, Groß U, Pleyer U, Spekker K, Däubener W, Werdermann S, Niederstrasser O. Peptide microarray analysis of in silico-predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans. Clin Vaccine Immunol. 2012;19:865–74.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. Beghetto E, Spadoni A, Bruno L, Buffolano W, Gargano N. Chimeric antigens of Toxoplasma gondii: toward standardization of toxoplasmosis serodiagnosis using recombinant products. J Clin Microbiol. 2006;44:2133–40.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. Dai J, Jiang M, Wang Y, Qu L, Gong R, Si J. Evaluation of a recombinant multiepitope peptide for serodiagnosis of Toxoplasma gondii infection. Clin Vaccine Immunol. 2012;19:338–42.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Dai J-F, Jiang M, Qu L-L, Sun L, Wang Y-Y, Gong L-L, Gong R-J, Si J. Toxoplasma gondii: enzyme-linked immunosorbent assay based on a recombinant multi-epitope peptide for distinguishing recent from past infection in human sera. Exp Parasitol. 2013;133:95–100.

    PubMed  Article  CAS  Google Scholar 

  64. Holec-Gąsior L, Ferra B, Drapała D, Lautenbach D, Kur J. A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxoplasmosis. Clin Vaccine Immunol. 2012;19:57–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Holec-Gąsior L, Ferra B, Drapała D. MIC1-MAG1-SAG1 chimeric protein, a most effective antigen for detection of human toxoplasmosis. Clin Vaccine Immunol. 2012;19:1977–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Lau YL, Thiruvengadam G, Lee WW, Fong MY. Immunogenic characterization of the chimeric surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii expressed in the yeast Pichia pastoris. Parasitol Res. 2011;109:871–8.

    PubMed  Article  Google Scholar 

  67. Roggen EL. Recent developments with B-cell epitope identification for predictive studies. J Immunotoxicol. 2006;3:137–49.

    PubMed  Article  CAS  Google Scholar 

  68. Cardona N, de-la-Torre A, Siachoque H, Patarroyo MA, Gomez-Marin JE. Toxoplasma gondii: P30 peptides recognition pattern in human toxoplasmosis. Exp Parasitol. 2009;123:199–202.

    PubMed  Article  CAS  Google Scholar 

  69. Mévélec M, Mercereau-Puijalon O, Buzoni-Gatel D, Bourguin I, Chardès T, Dubremetz J, Bout D. Mapping of B epitopes in GRA4, a dense granule antigen of Toxoplasma gondii and protection studies using recombinant proteins administered by the oral route. Parasite Immunol. 1998;20:183–95.

    PubMed  Google Scholar 

  70. Reineke U. Antibody epitope mapping using de novo generated synthetic peptide libraries. Methods Mol Biol. 2009;524:203–11.

    PubMed  Article  CAS  Google Scholar 

  71. Switaj K, Master A, Skrzypczak M, Zaborowski P. Recent trends in molecular diagnostics for Toxoplasma gondii infections. Clin Microbiol Infect. 2005;11:170–6.

    PubMed  Article  CAS  Google Scholar 

  72. Gutierrez J, O’Donovan J, Williams E, Proctor A, Brady C, Marques P, Worrall S, Nally J, McElroy M, Bassett H. Detection and quantification of Toxoplasma gondii in ovine maternal and foetal tissues from experimentally infected pregnant ewes using real-time PCR. Vet Parasitol. 2010;172:8–15.

    PubMed  Article  CAS  Google Scholar 

  73. Fallahi S, Tabaei SJS, Pournia Y, Zebardast N, Kazemi B. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia. Diagn Microbiol Infect Dis. 2014;79:347–54.

    PubMed  Article  CAS  Google Scholar 

  74. Burg JL, Grover CM, Pouletty P, Boothroyd J. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol. 1989;27:1787–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Cazenave J, Cheyrou A, Blouin P, Johnson A, Begueret J. Use of polymerase chain reaction to detect Toxoplasma. J Clin Pathol. 1991;44:1037.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. Homan W, Vercammen M, De Braekeleer J, Verschueren H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol. 2000;30:69–75.

    PubMed  Article  CAS  Google Scholar 

  77. Reischl U, Bretagne S, Krüger D, Ernault P, Costa J-M. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis. 2003;3:1.

    Article  Google Scholar 

  78. Fallahi S, Mazar ZA, Ghasemian M, Haghighi A. Challenging loop-mediated isothermal amplification (LAMP) technique for molecular detection of Toxoplasma gondii. Asian Pac J Trop Med. 2015;8:366–72.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  79. Calderaro A, Piccolo G, Gorrini C, Peruzzi S, Zerbini L, Bommezzadri S, Dettori G, Chezzi C. Comparison between two real-time PCR assays and a nested-PCR for the detection of Toxoplasma gondii. Acta Biomedica-Ateneo Parmense. 2006;77:75.

    CAS  Google Scholar 

  80. Alonso R, Martinez E, Laynez P, Miguélez M, Pinero J, Valladares B. Detection by nested-PCR of Toxoplasma gondii in patients infected with human immunodeficiency virus. Medcina Clínica. 2002;118:294–6.

    Article  Google Scholar 

  81. Kourenti C, Karanis P. Evaluation and applicability of a purification method coupled with nested PCR for the detection of Toxoplasma oocysts in water. Lett Appl Microbiol. 2006;43:475–81.

    PubMed  Article  CAS  Google Scholar 

  82. Mousavi M, Saravani R, Modrek MJ, Shahrakipour M, Sekandarpour S. Detection of Toxoplasma gondii in diabetic patients using the nested PCR assay via RE and B1 genes. Jundishapur J Microbiol. 2016;9:e29493.

    PubMed  PubMed Central  Google Scholar 

  83. Vitale M, Galluzzo P, Currò V, Gozdzik K, Schillaci D, Di Macro Lo Presti V. A high sensitive nested PCR for Toxoplasma gondii detection in animal and food samples. J Microb Biochem Technol. 2013;5:39–41.

    Article  CAS  Google Scholar 

  84. Eskandarian AA. Development of an efficient multiplex semi-nested PCR for convenient use in urine samples for diagnosis of toxoplasmosis. MedicalExpress. 2014;1:39–42.

    Google Scholar 

  85. Yamada H, Nishikawa A, Yamamoto T, Mizue Y, Yamada T, Morizane M, Tairaku S, Nishihira J. Prospective study of congenital toxoplasmosis screening with use of IgG avidity and multiplex nested PCR methods. J Clin Microbiol. 2011;49:2552–6.

    PubMed  PubMed Central  Article  Google Scholar 

  86. Martinez E, Carmelo E, Alonso R, Ortega A, Pinero J, Del Castillo A, Valladares B. Development of a rapid polymerase chain reaction-ELISA assay using polystyrene beads for the detection of Toxoplasma gondii DNA. Lett Appl Microbiol. 2003;36:30–4.

    PubMed  Article  CAS  Google Scholar 

  87. Nowakowska D, Colón I, Remington JS, Grigg M, Golab E, Wilczynski J, Sibley LD. Genotyping of Toxoplasma gondii by multiplex PCR and peptide-based serological testing of samples from infants in Poland diagnosed with congenital toxoplasmosis. J Clin Microbiol. 2006;44:1382–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Rahumatullah A, Khoo BY, Noordin R. Triplex PCR using new primers for the detection of Toxoplasma gondii. Exp Parasitol. 2012;131:231–8.

    PubMed  Article  CAS  Google Scholar 

  89. Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004;10:190–212.

    PubMed  Article  CAS  Google Scholar 

  90. De Waal T. Advances in diagnosis of protozoan diseases. Vet Parasitol. 2012;189:65–74.

    PubMed  Article  Google Scholar 

  91. Costa J-M, Pautas C, Ernault P, Foulet F, Cordonnier C, Bretagne S. Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogeneic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. J Clin Microbiol. 2000;38:2929–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Santos FF, Commodaro A, Nascimento HM, Furtado JM, Muccioli C, Rizzo LV, Belfort R Jr. Real-time PCR in the diagnosis of infectious posterior uveitis by toxoplasmosis. Invest Ophthalmol Vis Sci. 2014;55:5284.

    Article  Google Scholar 

  93. Costa JGL, Carneiro ACAV, Tavares AT, Andrade GMQ, Vasconcelos-Santos DV, Januário JN, Menezes-Souza D, Fujiwara RT, Vitor RWA. Real-time PCR as a prognostic tool for human congenital toxoplasmosis. J Clin Microbiol. 2013;51:2766–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Juránková J, Opsteegh M, Neumayerová H, Kovařčík K, Frencová A, Baláž V, Volf J, Koudela B. Quantification of Toxoplasma gondii in tissue samples of experimentally infected goats by magnetic capture and real-time PCR. Vet Parasitol. 2013;193:95–9.

    PubMed  Article  CAS  Google Scholar 

  95. Wells B, Shaw H, Innocent G, Guido S, Hotchkiss E, Parigi M, Opsteegh M, Green J, Gillespie S, Innes EA. Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529 bp real-time PCR and ITS1 nested PCR. Water Res. 2015;87:175–81.

    PubMed  Article  CAS  Google Scholar 

  96. Juránková J, Basso W, Neumayerová H, Frencová A, Baláž V, Deplazes P, Koudela B. Predilection sites for Toxoplasma gondii in sheep tissues revealed by magnetic capture and real-time PCR detection. Food Microbiol. 2015;52:150–3.

    PubMed  Article  CAS  Google Scholar 

  97. Bastien P, Procop GW, Reischl U. Quantitative real-time PCR is not more sensitive than “conventional” PCR. J Clin Microbiol. 2008;46:1897–900.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Kompalic-Cristo A, Frotta C, Suárez-Mutis M, Fernandes O, Britto C. Evaluation of a real-time PCR assay based on the repetitive B1 gene for the detection of Toxoplasma gondii in human peripheral blood. Parasitol Res. 2007;101:619–25.

    PubMed  Article  Google Scholar 

  99. Lin M-H, Chen T-C, Kuo T-T, Tseng C-C, Tseng C-P. Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol. 2000;38:4121–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Delhaes L, Yera H, Ache S, Tsatsaris V, Houfflin-Debarge V. Contribution of molecular diagnosis to congenital toxoplasmosis. Diagn Microbiol Infect Dis. 2013;76:244–7.

    PubMed  Article  CAS  Google Scholar 

  101. Juránková J, Basso W, Neumayerová H, Baláž V, Jánová E, Sidler X, Deplazes P, Koudela B. Brain is the predilection site of Toxoplasma gondii in experimentally inoculated pigs as revealed by magnetic capture and real-time PCR. Food Microbiol. 2014;38:167–70.

    PubMed  Article  CAS  Google Scholar 

  102. Abbasi I, King CH, Muchiri EM, Hamburger J. Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: identification of infected snails from early prepatency. Am J Trop Med Hyg. 2010;83:427–32.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Alhassan A, Thekisoe OM, Yokoyama N, Inoue N, Motloang MY, Mbati PA, Yin H, Katayama Y, Anzai T, Sugimoto C. Development of loop-mediated isothermal amplification (LAMP) method for diagnosis of equine piroplasmosis. Vet Parasitol. 2007;143:155–60.

    PubMed  Article  Google Scholar 

  104. Gallas-Lindemann C, Sotiriadou I, Mahmoodi MR, Karanis P. Detection of Toxoplasma gondii oocysts in different water resources by loop mediated isothermal amplification (LAMP). Acta Trop. 2013;125:231–6.

    PubMed  Article  CAS  Google Scholar 

  105. Abdul-Ghani R, Al-Mekhlafi AM, Karanis P. Loop-mediated isothermal amplification (LAMP) for malarial parasites of humans: would it come to clinical reality as a point-of-care test? Acta Trop. 2012;122:233–40.

    PubMed  Article  CAS  Google Scholar 

  106. Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009;15:62–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  107. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006;52:303–6.

    PubMed  Article  CAS  Google Scholar 

  108. Zhang H, Thekisoe OM, Aboge GO, Kyan H, Yamagishi J, Inoue N, Nishikawa Y, Zakimi S, Xuan X. Toxoplasma gondii: sensitive and rapid detection of infection by loop-mediated isothermal amplification (LAMP) method. Exp Parasitol. 2009;122:47–50.

    PubMed  Article  CAS  Google Scholar 

  109. Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron. 2014;61:491–9.

    PubMed  Article  CAS  Google Scholar 

  110. Wang Y, Wang G, Zhang D, Yin H, Wang M. Detection of acute toxoplasmosis in pigs using loop-mediated isothermal amplification and quantitative PCR. Korean J Parasitol. 2013;51:573–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Lin Z, Zhang Y, Zhang H, Zhou Y, Cao J, Zhou J. Comparison of loop-mediated isothermal amplification (LAMP) and real-time PCR method targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Vet Parasitol. 2012;185:296–300.

    PubMed  Article  CAS  Google Scholar 

  112. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. Sotiriadou I, Karanis P. Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water samples and comparative findings by polymerase chain reaction and immunofluorescence test (IFT). Diagn Microbiol Infect Dis. 2008;62:357–65.

    PubMed  Article  CAS  Google Scholar 

  114. Qu D, Zhou H, Han J, Tao S, Zheng B, Chi N, Su C, Du A. Development of reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a diagnostic tool of Toxoplasma gondii in pork. Vet Parasitol. 2013;192:98–103.

    PubMed  Article  CAS  Google Scholar 

  115. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y. Specific, sensitive, and rapid diagnosis of active toxoplasmosis by a loop-mediated isothermal amplification method using blood samples from patients. J Clin Microbiol. 2010;48:3698–702.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. Hu X, Pan C-W, Li Y-F, Wang H, Tan F. Urine sample used for detection of Toxoplasma gondii infection by loop-mediated isothermal amplification (LAMP). Folia Parasitol. 2012;59:21.

    Article  CAS  Google Scholar 

  117. Kong Q-M, Lu S-H, Tong Q-B, Lou D, Chen R, Zheng B, Kumagai T, Wen L-Y, Ohta N, Zhou X-N. Loop-mediated isothermal amplification (LAMP): early detection of Toxoplasma gondii infection in mice. Parasites Vectors. 2012;5:1.

    Article  CAS  Google Scholar 

  118. Smith AB, Smirniotopoulos JG, Rushing EJ. Central nervous system infections associated with human immunodeficiency virus infection: radiologic–pathologic correlation 1. Radiographics. 2008;28:2033–58.

    PubMed  Article  Google Scholar 

  119. Scheld MW, Whitley RJ, Marra CM. Infections of the central nervous system. Philadelphia: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  120. Masamed R, Meleis A, Lee E, Hathout G. Cerebral toxoplasmosis: case review and description of a new imaging sign. Clin Radiol. 2009;64:560–3.

    PubMed  Article  CAS  Google Scholar 

  121. Brightbill T, Post MJD, Hensley GT, Ruiz A. MR of Toxoplasma encephalitis: signal characteristics on T2-weighted images and pathologic correlation. J Comput Assist Tomogr. 1996;20:417–22.

    PubMed  Article  CAS  Google Scholar 

  122. Khan AN, Smirniotopoulos JG. Imaging in CNS toxoplasmosis. 2015. https://emedicine.medscape.com/article/344706-overview. Accessed 15 Nov 2017.

  123. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, Coleman RE. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med Off Publ Soc Nucl Med. 1993;34:567–75.

    CAS  Google Scholar 

  124. Villringer K, Jäger H, Dichgans M, Ziegler S, Poppinger J, Herz M, Kruschke C, Minoshima S, Pfister HW, Schwaiger M. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr. 1995;19:532–6.

    PubMed  Article  CAS  Google Scholar 

  125. Kim HW, Won KS, Choi BW, Zeon SK. Cerebral toxoplasmosis in a patient with AIDS on F-18 FDG PET/CT. Nucl Med Mol Imaging. 2010;44:75–7.

    PubMed  PubMed Central  Article  Google Scholar 

  126. D’Ercole C, Girard N, Boubli L, Potier A, Chagnon C, Raybaud C, Blanc B. Prenatal diagnosis of fetal cerebral abnormalities by ultrasonography and magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol. 1993;50:177–84.

    PubMed  Article  Google Scholar 

  127. Lago E, Baldisserotto M, Hoefel Filho J, Santiago D, Jungblut R. Agreement between ultrasonography and computed tomography in detecting intracranial calcifications in congenital toxoplasmosis. Clin Radiol. 2007;62:1004–11.

    PubMed  Article  CAS  Google Scholar 

  128. Abboud P, Harika G, Saniez D, Gabriel R, Bednarczyk L, Chemla C, Quereux C. Ultrasonic signs of fetal toxoplasmosis. Review of the literature. J Gynecol Obstet Biol Reprod. 1994;24:733–8.

    Google Scholar 

  129. Lavinsky D, Romano A, Muccioli C, Belfort R Jr. Imaging in ocular toxoplasmosis. Int Ophthalmol Clin. 2012;52:131–43.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirzad Fallahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rostami, A., Karanis, P. & Fallahi, S. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection 46, 303–315 (2018). https://doi.org/10.1007/s15010-017-1111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1111-3

Keywords

  • Advances
  • Diagnosis
  • Toxoplasma gondii infection
  • Toxoplasmosis