Infection

pp 1–17 | Cite as

Pharmacological aspects and spectrum of action of ceftazidime–avibactam: a systematic review

  • Felipe Francisco Tuon
  • Jaime L. Rocha
  • Marcelo R. Formigoni-Pinto
Review

Abstract

Purpose

Ceftazidime–avibactam is an antimicrobial association active against several Enterobacteriaceae species, including those resistant to carbapenem. Considering the importance of this drug in the current panorama of multidrug-resistant bacteria, we performed a systematic review about ceftazidime–avibactam with emphasis on clinical and pharmacological published data.

Methods

A systematic search of the medical literature was performed. The databases searched included MEDLINE, EMBASE and Web of Science (until September 2017). The search terms used were ‘avibactam’, ‘NXL104’ and ‘AVE1330A’. Bibliographies from those studies were also reviewed. Ceftazidime was not included as a search term, once relevant studies about avibactam in association with other drugs could be excluded. Only articles in English were selected. No statistical analysis or quality validation was included in this review.

Results

A total of 151 manuscripts were included. Ceftazidime–avibactam has limited action against anaerobic bacteria. Avibactam is a potent inhibitor of class A, class C, and some class D enzymes, which includes KPC-2. The best pharmacodynamic profile of ceftazidime–avibactam is ƒT > MIC, validated in an animal model of soft tissue infection. Three clinical trials showed the efficacy of ceftazidime–avibactam in patients with intra-abdominal and urinary infections. Ceftazidime–avibactam has been evaluated versus meropenem/doripenem in hospitalized adults with nosocomial pneumonia, neutropenic patients and pediatric patients.

Conclusion

Ceftazidime–avibactam has a favorable pharmacokinetic profile for severe infections and highly active against carbapenemases of KPC-2 type.

Keywords

Cephalosporin Pharmacology Avibactam Ceftazidime 

Notes

Compliance with ethical standards

Conflict of interest

FFT and JLR received grants from Astra-Zeneca. Marcelo R. Formigoni-Pinto works in the medical scientific division of Astra-Zeneca.

References

  1. 1.
    Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151–61.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Endimiani A, Luzzaro F, Brigante G, Perilli M, Lombardi G, Amicosante G, Rossolini GM, Toniolo A. Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2005;49:2598–605.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yigit H, Queenan AM, Rasheed JK, Biddle JW, Domenech-Sanchez A, Alberti S, Bush K, Tenover FC. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob Agents Chemother. 2003;47:3881–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, Polsky B, Adams-Haduch JM, Doi Y. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56:2108–113.Google Scholar
  5. 5.
    Kitchel B, Rasheed JK, Endimiani A, Hujer AM, Anderson KF, Bonomo RA, Patel JB. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2010;54:4201–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother. 2008;52:1257–63.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bratu S, Brooks S, Burney S, Kochar S, Gupta J, Landman D, Quale J. Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. Clin Infect Dis. 2007;44:972–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Leavitt A, Carmeli Y, Chmelnitsky I, Goren MG, Ofek I, Navon-Venezia S. Molecular epidemiology, sequence types, and plasmid analyses of KPC-producing Klebsiella pneumoniae strains in Israel. Antimicrob Agents Chemother. 2010;54:3002–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Villegas MV, Lolans K, Correa A, Suarez CJ, Lopez JA, Vallejo M, Quinn JP. Colombian nosocomial resistance study G. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother. 2006;50:2880–2.PubMedCrossRefGoogle Scholar
  10. 10.
    Woodford N, Zhang J, Warner M, Kaufmann ME, Matos J, Macdonald A, Brudney D, Sompolinsky D, Navon-Venezia S, Livermore DM. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother. 2008;62:1261–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Pavez M, Mamizuka EM, Lincopan N. Early dissemination of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother. 2009;53:2702.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Peirano G, Seki LM, Val Passos VL, Pinto MC, Guerra LR, Asensi MD. Carbapenem-hydrolysing beta-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother. 2009;63:265–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Fehlberg LC, Carvalho AM, Campana EH, Gontijo-Filho PP, Gales AC. Emergence of Klebsiella pneumoniae-producing KPC-2 carbapenemase in Paraiba, Northeastern Brazil. Braz J Infect Dis. 2012;16:577–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Cabral AB, Melo Rde C, Maciel MA, Lopes AC. Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop. 2012;45:572–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008–2010). Diagn Microbiol Infect Dis. 2012;73:354–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36.PubMedCrossRefGoogle Scholar
  17. 17.
    Rossi F. The challenges of antimicrobial resistance in Brazil. Clin Infect Dis. 2011;52:1138–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Wise R, Andrews JM, Bedford KA. Comparison of in vitro activity of GR 20263, a novel cephalosporin derivative, with activities of other beta-lactam compounds. Antimicrob Agents Chemother. 1980;17:884–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Clarke AM, Zemcov SJ. Ro 13-9904 and GR 20263, two new cephalosporins with broad-spectrum activity: an in vitro comparison with other beta-lactam antibiotics. J Antimicrob Chemother. 1981;7:515–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Philippon A, Ben Redjeb S, Fournier G, Ben Hassen A. Epidemiology of extended spectrum beta-lactamases. Infection. 1989;17:347–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Nathisuwan S, Burgess DS, Lewis JS 2nd. Extended-spectrum beta-lactamases: epidemiology, detection, and treatment. Pharmacotherapy. 2001;21:920–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Lomaestro BM, Tobin EH, Shang W, Gootz T. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin Infect Dis. 2006;43:e26–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, Yoshimura F, Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994;38:71–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, Woodford N. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59:5324–30.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shields RK, Nguyen MH, Press EG, Chen L, Kreiswirth BN, Clancy CJ. In vitro selection of meropenem resistance among ceftazidime-avibactam resistant, meropenem susceptible Klebsiella pneumoniae isolates with variant KPC-3 carbapenemases. Antimicrob Agents Chemother. 2017.Google Scholar
  26. 26.
    Livermore DM, Mushtaq S, Warner M, Miossec C, Woodford N. NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother. 2008;62:1053–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Lucasti C, Popescu I, Ramesh MK, Lipka J, Sable C. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind. Phase II trial. J Antimicrob Chemother. 2013;68:1183–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Vazquez JA, Gonzalez Patzan LD, Stricklin D, Duttaroy DD, Kreidly Z, Lipka J, Sable C. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin. 2012;28:1921–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Mazuski JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, Llorens L, Newell P, Pachl J. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62:1380–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    de Jonge BL, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF, Nichols WW. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012–2014). Antimicrob Agents Chemother. 2016;60:3163–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sader HS, Castanheira M, Flamm RK, Farrell DJ, Jones RN. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from US medical centers in 2012. Antimicrob Agents Chemother. 2014;58:1684–92.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Verbist L, Verhaegen J. GR-20263: a new aminothiazolyl cephalosporin with high activity against Pseudomonas and Enterobacteriaceae. Antimicrob Agents Chemother. 1980;17:807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Aszodi J, Rowlands DA, Mauvais P, Collette P, Bonnefoy A, Lampilas M. Design and synthesis of bridged gamma-lactams as analogues of beta-lactam antibiotics. Bioorg Med Chem Lett. 2004;14:2489–92.PubMedGoogle Scholar
  34. 34.
    Kitzis MD, Goldstein FW, Labia R, Acar JF. Activity of sulbactam and clavulanic acid, alone and combined, on Acinetobacter calcoaceticus. Ann Microbiol (Paris). 1983;134A:163–8.PubMedGoogle Scholar
  35. 35.
    Das S, Li J, Armstrong J, Learoyd M, Edeki T. Randomized pharmacokinetic and drug-drug interaction studies of ceftazidime, avibactam, and metronidazole in healthy subjects. Pharmacol Res Perspect. 2015;3:e00172.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jones RN, Holliday NM, Krause KM. Validation of sensititre dry-form broth microdilution panels for susceptibility testing of ceftazidime-avibactam, a broad-spectrum-beta-lactamase inhibitor combination. Antimicrob Agents Chemother. 2015;59:5036–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    CLSI. Clinical Laboratory Standard Institute—performance standard for antimicrobial susceptibility testing; Twenty-Third Informational Supplement. 2017.Google Scholar
  38. 38.
    Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160–201.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bonomo RA. Beta-Lactamases: a focus on current challenges. Cold Spring Harb Perspect Med. 2017;7.Google Scholar
  40. 40.
    Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. J Antimicrob Chemother. 2006;57:373–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev. 2006;30:673–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Humphries RM, Hemarajata P. Resistance to Ceftazidime-Avibactam in Klebsiella pneumoniae Due to Porin Mutations and the Increased Expression of KPC-3. Antimicrob Agents Chemother. 2017;61. Epub 2017/04/12.Google Scholar
  43. 43.
    Sgrignani J, Grazioso G, De Amici M, Colombo G. Inactivation of TEM-1 by avibactam (NXL-104): insights from quantum mechanics/molecular mechanics metadynamics simulations. Biochemistry. 2014;53:5174–85.PubMedCrossRefGoogle Scholar
  44. 44.
    Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL. Avibactam is a covalent, reversible, non-beta-lactam beta-lactamase inhibitor. Proc Natl Acad Sci USA. 2012;109:11663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lahiri SD, Mangani S, Durand-Reville T, Benvenuti M, De Luca F, Sanyal G, Docquier JD. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC beta-lactamases. Antimicrob Agents Chemother. 2013;57:2496–505.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Choi H, Paton RS, Park H, Schofield CJ. Investigations on recyclisation and hydrolysis in avibactam mediated serine beta-lactamase inhibition. Org Biomol Chem. 2016;14:4116–28.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Asli A, Brouillette E, Krause KM, Nichols WW, Malouin F. Distinctive binding of avibactam to penicillin-binding proteins of Gram-Negative and Gram-Positive bacteria. Antimicrob Agents Chemother. 2016;60:752–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Papp-Wallace KM, Winkler ML, Gatta JA, Taracila MA, Chilakala S, Xu Y, Johnson JK, Bonomo RA. Reclaiming the efficacy of beta-lactam-beta-lactamase inhibitor combinations: avibactam restores the susceptibility of CMY-2-producing Escherichia coli to ceftazidime. Antimicrob Agents Chemother. 2014;58:4290–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lahiri SD, Bradford PA, Nichols WW, Alm RA. Structural and sequence analysis of class A beta-lactamases with respect to avibactam inhibition: impact of Omega-loop variations. J Antimicrob Chemother. 2016;71:2848–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Abboud MI, Damblon C, Brem J, Smargiasso N, Mercuri P, Gilbert B, Rydzik AM, Claridge TD, Schofield CJ, Frere JM. Interaction of avibactam with Class B metallo-beta-lactamases. Antimicrob Agents Chemother. 2016;60:5655–62 Epub 2016/07/13.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother. 1999;43:882–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Miossec C, Claudon M, Levasseur P, Black MT. The beta-lactamase inhibitor avibactam (NXL104) does not induce ampC beta-lactamase in Enterobacter cloacae. Infect Drug Resist. 2013;6:235–40.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bonnefoy A, Dupuis-Hamelin C, Steier V, Delachaume C, Seys C, Stachyra T, Fairley M, Guitton M, Lampilas M. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother. 2004;54:410–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Stachyra T, Pechereau MC, Bruneau JM, Claudon M, Frere JM, Miossec C, Coleman K, Black MT. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother. 2010;54:5132–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Stachyra T, Levasseur P, Pechereau MC, Girard AM, Claudon M, Miossec C, Black MT. In vitro activity of the {beta}-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother. 2009;64:326–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Nelson K, Hemarajata P, Sun D, Rubio-Aparicio D, Tsivkovski R, Yang S, Sebra R, Kasarskis A, Nguyen H, Hanson BM, Leopold S, Weinstock G, Lomovskaya O, Humphries RM. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61 (Epub 2017/07/26).Google Scholar
  57. 57.
    Levasseur P, Girard AM, Miossec C, Pace J, Coleman K. In vitro antibacterial activity of the ceftazidime-avibactam combination against enterobacteriaceae, including strains with well-characterized beta-lactamases. Antimicrob Agents Chemother. 2015;59:1931–4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Berkhout J, Melchers MJ, van Mil AC, Nichols WW, Mouton JW. In vitro activity of ceftazidime-avibactam combination in in vitro checkerboard assays. Antimicrob Agents Chemother. 2015;59:1138–44.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Berkhout J, Melchers MJ, van Mil AC, Seyedmousavi S, Lagarde CM, Nichols WW, Mouton JW. Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrob Agents Chemother. 2015;59:2299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Berkhout J, Melchers MJ, van Mil AC, Seyedmousavi S, Lagarde CM, Schuck VJ, Nichols WW, Mouton JW. Pharmacodynamics of ceftazidime and avibactam in neutropenic mice with thigh or lung infection. Antimicrob Agents Chemother. 2015;60:368–75.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Papp-Wallace KM, Bajaksouzian S, Abdelhamed AM, Foster AN, Winkler ML, Gatta JA, Nichols WW, Testa R, Bonomo RA, Jacobs MR. Activities of ceftazidime, ceftaroline, and aztreonam alone and combined with avibactam against isogenic Escherichia coli strains expressing selected single beta-lactamases. Diagn Microbiol Infect Dis. 2015;82:65–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lagace-Wiens P, Walkty A, Karlowsky JA. Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid. 2014;9:13–25.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    MacVane SH, Crandon JL, Nichols WW, Nicolau DP. In vivo efficacy of humanized exposures of ceftazidime-avibactam in comparison with ceftazidime against contemporary Enterobacteriaceae isolates. Antimicrob Agents Chemother. 2014;58:6913–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    MacVane SH, Crandon JL, Nichols WW, Nicolau DP. Unexpected in vivo activity of ceftazidime alone and in combination with avibactam against New Delhi metallo-beta-lactamase-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob Agents Chemother. 2014;58:7007–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li H, Estabrook M, Jacoby GA, Nichols WW, Testa RT, Bush K. In vitro susceptibility of characterized beta-lactamase-producing strains tested with avibactam combinations. Antimicrob Agents Chemother. 2015;59:1789–93.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Castanheira M, Farrell SE, Krause KM, Jones RN, Sader HS. Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine US census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother. 2014;58:833–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lopez-Hernandez I, Alonso N, Fernandez-Martinez M, Zamorano L, Rivera A, Oliver A, Conejo MC, Martinez-Martinez L, Navarro F, Pascual A. Activity of ceftazidime-avibactam against multidrug-resistance Enterobacteriaceae expressing combined mechanisms of resistance. Enferm Infecc Microbiol Clin. 2017;35:499–504 Epub 2016/11/27.PubMedCrossRefGoogle Scholar
  68. 68.
    Sader HS, Castanheira M, Shortridge D, Mendes RE, Flamm RK. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States Medical Centers (2013–2016). Antimicrob Agents Chemother. 2017 (Epub 2017/08/23).Google Scholar
  69. 69.
    Karlowsky JA, Biedenbach DJ, Kazmierczak KM, Stone GG, Sahm DF. Activity of ceftazidime-avibactam against extended-spectrum- and AmpC beta-lactamase-producing Enterobacteriaceae collected in the INFORM global surveillance study from 2012 to 2014. Antimicrob Agents Chemother. 2016;60:2849–57.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sader HS, Castanheira M, Flamm RK, Huband MD, Jones RN. Ceftazidime-avibactam activity against aerobic Gram negative organisms isolated from intra-abdominal infections in United States Hospitals, 2012–2014. Surg Infect (Larchmt). 2016;17:473–8.CrossRefGoogle Scholar
  71. 71.
    Sader HS, Castanheira M, Flamm RK. Antimicrobial activity of ceftazidime-avibactam against gram-negative bacteria isolated from patients hospitalized with pneumonia in US Medical Centers, 2011–2015. Antimicrob Agents Chemother. 2011;2017:61 Epub 2017/01/11.Google Scholar
  72. 72.
    Lahiri SD, Mangani S, Jahic H, Benvenuti M, Durand-Reville TF, De Luca F, Ehmann DE, Rossolini GM, Alm RA, Docquier JD. Molecular basis of selective inhibition and slow reversibility of avibactam against class D carbapenemases: a structure-guided study of OXA-24 and OXA-48. ACS Chem Biol. 2015;10:591–600.PubMedCrossRefGoogle Scholar
  73. 73.
    Yoshizumi A, Ishii Y, Aoki K, Testa R, Nichols WW, Tateda K. In vitro susceptibility of characterized beta-lactamase-producing Gram-negative bacteria isolated in Japan to ceftazidime-, ceftaroline-, and aztreonam-avibactam combinations. J Infect Chemother. 2015;21:148–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Winkler ML, Papp-Wallace KM, Taracila MA, Bonomo RA. Avibactam and inhibitor-resistant SHV beta-lactamases. Antimicrob Agents Chemother. 2015;59:3700–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. Ceftazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. Int J Antimicrob Agents. 2015;46:53–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Flamm RK, Nichols WW, Sader HS, Farrell DJ, Jones RN. In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrob Agents. 2016;47:235–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Flamm RK, Sader HS, Farrell DJ, Jones RN. Ceftazidime-avibactam and comparator agents tested against urinary tract isolates from a global surveillance program (2011). Diagn Microbiol Infect Dis. 2014;80:233–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Rossi F, Cury AP, Franco MRG, Testa R, Nichols WW. The in vitro activity of ceftazidime-avibactam against 417 Gram-negative bacilli collected in 2014 and 2015 at a teaching hospital in Sao Paulo, Brazil. Braz J Infect Dis. 2017 (Epub 2017/04/25).Google Scholar
  79. 79.
    Hachem R, Reitzel R, Rolston K, Chaftari AM, Raad I. Antimicrobial activities of ceftazidime-avibactam and comparator agents against clinical bacteria isolated from patients with cancer. Antimicrob Agents Chemother. 2017;61 (Epub 2017/01/25).Google Scholar
  80. 80.
    Sader HS, Castanheira M, Jones RN, Flamm RK. Antimicrobial activity of ceftazidime-avibactam and comparator agents when tested against bacterial isolates causing infection in cancer patients (2013–2014). Diagn Microbiol Infect Dis. 2017;87:261–5 Epub 2017/01/11.PubMedCrossRefGoogle Scholar
  81. 81.
    Testa R, Canton R, Giani T, Morosini MI, Nichols WW, Seifert H, Stefanik D, Rossolini GM, Nordmann P. In vitro activity of ceftazidime, ceftaroline and aztreonam alone and in combination with avibactam against European Gram-negative and Gram-positive clinical isolates. Int J Antimicrob Agents. 2015;45:641–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Pitart C, Marco F, Keating TA, Nichols WW, Vila J. Activity of ceftazidime-avibactam against fluoroquinolone-resistant Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59:3059–65.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Denisuik AJ, Karlowsky JA, Denisuik T, Nichols WW, Keating TA, Adam HJ, Baxter M, Walkty A, Zhanel GG. In vitro activity of ceftazidime-avibactam against 338 molecularly characterized gentamicin-nonsusceptible Gram-negative clinical isolates obtained from patients in Canadian hospitals. Antimicrob Agents Chemother. 2015;59:3623–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Endimiani A, Hujer KM, Hujer AM, Armstrong ES, Choudhary Y, Aggen JB, Bonomo RA. ACHN-490, a neoglycoside with potent in vitro activity against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2009;53:4504–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mushtaq S, Warner M, Livermore DM. In vitro activity of ceftazidime + NXL104 against Pseudomonas aeruginosa and other non-fermenters. J Antimicrob Chemother. 2010;65:2376–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Mushtaq S, Warner M, Williams G, Critchley I, Livermore DM. Activity of chequerboard combinations of ceftaroline and NXL104 versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2010;65:1428–32.PubMedCrossRefGoogle Scholar
  87. 87.
    Vasoo S, Cunningham SA, Cole NC, Kohner PC, Menon SR, Krause KM, Harris KA, De PP, Koh TH, Patel R. In vitro activities of ceftazidime-avibactam, aztreonam-avibactam, and a panel of older and contemporary antimicrobial agents against carbapenemase-producing Gram-Negative Bacilli. Antimicrob Agents Chemother. 2015;59:7842–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Dupont H, Gaillot O, Goetgheluck AS, Plassart C, Emond JP, Lecuru M, Gaillard N, Derdouri S, Lemaire B, Girard de Courtilles M, Cattoir V, Mammeri H. Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob Agents Chemother. 2015;60:215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Papp-Wallace KM, Winkler ML, Taracila MA, Bonomo RA. Variants of beta-lactamase KPC-2 that are resistant to inhibition by avibactam. Antimicrob Agents Chemother. 2015;59:3710–7.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Castanheira M, Mills JC, Costello SE, Jones RN, Sader HS. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from US hospitals (2011–2013) and characterization of beta-lactamase-producing strains. Antimicrob Agents Chemother. 2011;2015(59):3509–17.Google Scholar
  91. 91.
    Castanheira M, Mendes RE, Sader HS. Low frequency of ceftazidime-avibactam resistance among Enterobacteriaceae isolates carrying blaKPC Collected in US Hospitals from 2012 to 2015. Antimicrob Agents Chemother. 2017;61 (Epub 2016/12/30).Google Scholar
  92. 92.
    Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, Gregson A. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Haidar G, Clancy CJ, Chen L, Samanta P, Shields RK, Kreiswirth BN, Nguyen MH. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61 (Epub 2017/06/21).Google Scholar
  94. 94.
    Krishnan NP, Nguyen NQ, Papp-Wallace KM, Bonomo RA, van den Akker F. Inhibition of Klebsiella beta-Lactamases (SHV-1 and KPC-2) by avibactam: a structural study. PLoS One. 2015;10:e0136813.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Aitken SL, Tarrand JJ, Deshpande LM, Tverdek FP, Jones AL, Shelburne SA, Prince RA, Bhatti MM, Rolston KVI, Jones RN, Castanheira M, Chemaly RF. High rates of nonsusceptibility to ceftazidime-avibactam and identification of New Delhi metallo-beta-lactamase production in enterobacteriaceae bloodstream infections at a major cancer center. Clin Infect Dis. 2016;63:954–8 Epub 2016/06/18.PubMedCrossRefGoogle Scholar
  96. 96.
    Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, Dinh A. Ceftazidime-Avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61 (Epub 2017/06/21).Google Scholar
  97. 97.
    Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, Hujer KM, Marshall EK, Rudin SD, Perez F, Wilson BM, Wasserman RB, Chikowski L, Paterson DL, Vila AJ, van Duin D, Kreiswirth BN, Chambers HF, Fowler VG, Jr., Jacobs MR, Pulse ME, Weiss WJ, Bonomo RA. Can ceftazidime-avibactam and aztreonam overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017;61 (Epub 2017/02/09).Google Scholar
  98. 98.
    Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70:1420–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Wenzler E, Deraedt MF, Harrington AT, Danizger LH. Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-beta-lactamase-producing Gram-negative pathogens. Diagn Microbiol Infect Dis. 2017;88:352–4 Epub 2017/06/13.PubMedCrossRefGoogle Scholar
  100. 100.
    Manning N, Balabanian G, Rose M, Landman D, Quale J. Activity of ceftazidime-avibactam against clinical isolates of Klebsiella pneumoniae, including KPC-carrying isolates, Endemic to New York City. Microb Drug Resist. 2017 (Epub 2017/06/08).Google Scholar
  101. 101.
    Both A, Buttner H, Huang J, Perbandt M, Belmar Campos C, Christner M, Maurer FP, Kluge S, Konig C, Aepfelbacher M, Wichmann D, Rohde H. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother. 2017;72:2483–8 Epub 2017/06/24.PubMedCrossRefGoogle Scholar
  102. 102.
    Porres-Osante N, Dupont H, Torres C, Ammenouche N, de Champs C, Mammeri H. Avibactam activity against extended-spectrum AmpC beta-lactamases. J Antimicrob Chemother. 2014;69:1715–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Lahiri SD, Giacobbe RA, Johnstone MR, Alm RA. Activity of avibactam against Enterobacter cloacae producing an extended-spectrum class C beta-lactamase enzyme. J Antimicrob Chemother. 2014;69:2942–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB, Alm RA. Avibactam and class C beta-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother. 2014;58:5704–13.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zhang Y, Kashikar A, Brown CA, Denys G, Bush K. Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob Agents Chemother. 2017;61 (Epub 2017/06/01).Google Scholar
  106. 106.
    Compain F, Arthur M. Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 beta-Lactamase. Antimicrob Agents Chemother. 2017;61 (Epub 2017/05/04).Google Scholar
  107. 107.
    Shields RK, Nguyen MH, Press EG, Chen L, Kreiswirth BN, Clancy CJ. In vitro selection of meropenem resistance among ceftazidime-avibactam-resistant, meropenem-susceptible Klebsiella pneumoniae isolates with variant KPC-3 carbapenemases. Antimicrob Agents Chemother. 2017;61 (Epub 2017/03/01).Google Scholar
  108. 108.
    Fernea A, Galleni M, Frere JM. Kinetics of the interaction between avibactam and the CHE-1 class C beta-lactamase. J Antimicrob Chemother. 2015;70:951–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Durand-Reville TF, Lahiri S, Thresher J, Livchak S, Gao N, Palmer T, Walkup GK, Fisher SL. Kinetics of avibactam inhibition against Class A, C, and D beta-lactamases. J Biol Chem. 2013;288:27960–71.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pages JM, Peslier S, Keating TA, Lavigne JP, Nichols WW. Role of the outer membrane and porins in susceptibility of beta-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother. 2015;60:1349–59.PubMedCrossRefGoogle Scholar
  111. 111.
    Shen Z, Ding B, Ye M, Wang P, Bi Y, Wu S, Xu X, Guo Q, Wang M. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;72:1930–6 Epub 2017/03/24.PubMedCrossRefGoogle Scholar
  112. 112.
    McLeod SM, Patey SA, Huband MD, Nichols WW. Impact of defined cell envelope mutations in Escherichia coli on the in vitro antibacterial activity of avibactam/beta-lactam combinations. Int J Antimicrob Agents. 2017;49:437–42 Epub 2017/03/01.PubMedCrossRefGoogle Scholar
  113. 113.
    Flamm RK, Farrell DJ, Sader HS, Jones RN. Ceftazidime/avibactam activity tested against Gram-negative bacteria isolated from bloodstream, pneumonia, intra-abdominal and urinary tract infections in US medical centres (2012). J Antimicrob Chemother. 2014;69:1589–98.PubMedCrossRefGoogle Scholar
  114. 114.
    Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS. in vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from US Medical Centers by Census Region, 2014. Antimicrob Agents Chemother. 2016;60:2537–41.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Walkty A, Adam H, Baxter M, Denisuik A, Lagace-Wiens P, Karlowsky JA, Hoban DJ, Zhanel GG. In vitro activity of plazomicin against 5015 gram-negative and gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011–2012. Antimicrob Agents Chemother. 2014;58:2554–63.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, Tuohy M, Hall G, Bonomo RA. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59:1020–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chalhoub H, Tunney M, Elborn JS, Vergison A, Denis O, Plesiat P, Kahl BC, Van Bambeke F, Tulkens PM. Avibactam confers susceptibility to a large proportion of ceftazidime-resistant Pseudomonas aeruginosa isolates recovered from cystic fibrosis patients. J Antimicrob Chemother. 2015;70:1596–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Sader HS, Castanheira M, Mendes RE, Flamm RK, Farrell DJ, Jones RN. Ceftazidime-avibactam activity against multidrug-resistant Pseudomonas aeruginosa isolated in US medical centers in 2012 and 2013. Antimicrob Agents Chemother. 2015;59:3656–9.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Grupper M, Sutherland C, Nicolau DP. Multicenter evaluation of ceftazidime-avibactam and ceftolozane-tazobactam inhibitory activity against meropenem-nonsusceptible Pseudomonas aeruginosa from blood, respiratory tract, and wounds. Antimicrob Agents Chemother. 2017;61 (Epub 2017/07/26).Google Scholar
  120. 120.
    Alatoom A, Elsayed H, Lawlor K, AbdelWareth L, El-Lababidi R, Cardona L, Mooty M, Bonilla MF, Nusair A, Mirza I. Comparison of antimicrobial activity between ceftolozane-tazobactam and ceftazidime-avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int J Infect Dis. 2017;62:39–43 Epub 2017/06/15.PubMedCrossRefGoogle Scholar
  121. 121.
    Fraile-Ribot PA, Mulet X, Cabot G, Del Barrio-Tofino E, Juan C, Perez JL, Oliver A. In vivo emergence of resistance to novel cephalosporin-beta-lactamase inhibitor combinations through the duplication of amino acid D149 from OXA-2 beta-Lactamase (OXA-539) in sequence type 235 Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61 (Epub 2017/07/05).Google Scholar
  122. 122.
    Papp-Wallace KM, Becka SA, Zeiser ET, Ohuchi N, Mojica MF, Gatta JA, Falleni M, Tosi D, Borghi E, Winkler ML, Wilson BM, LiPuma JJ, Nukaga M, Bonomo RA. Overcoming an extreme drug resistant (XDR) pathogen: avibactam restores susceptibility to ceftazidime for Burkholderia cepacia complex isolates from Cystic Fibrosis patients. ACS Infect Dis. 2017.Google Scholar
  123. 123.
    Everaert AC. T. Effect of β-Lactamase inhibitors on in vitro activity of β-Lactam antibiotics against Burkholderia cepacia complex species. Antimicrob Resist. Infect Control. 2017;16:1.Google Scholar
  124. 124.
    Curcio D. Activity of a novel combination against multidrug-resistant nonfermenters: ceftazidime plus NXL104. Expert Rev Anti Infect Ther. 2011;9:173–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Aktas Z, Kayacan C, Oncul O. In vitro activity of avibactam (NXL104) in combination with beta-lactams against Gram-negative bacteria, including OXA-48 beta-lactamase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2012;39:86–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Levasseur P, Girard AM, Claudon M, Goossens H, Black MT, Coleman K, Miossec C. In vitro antibacterial activity of the ceftazidime-avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2012;56:1606–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lahiri SD, Walkup GK, Whiteaker JD, Palmer T, McCormack K, Tanudra MA, Nash TJ, Thresher J, Johnstone MR, Hajec L, Livchak S, McLaughlin RE, Alm RA. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J Antimicrob Chemother. 2015;70:1650–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Buehrle DJ, Shields RK, Chen L, Hao B, Press EG, Alkrouk A, Potoski BA, Kreiswirth BN, Clancy CJ, Nguyen MH. Evaluation of the in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam against meropenem-resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2016;60:3227–31.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, Woodford N. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother. 2011;66:48–53.PubMedCrossRefGoogle Scholar
  130. 130.
    Rasmussen BA, Bush K, Tally FP. Antimicrobial resistance in anaerobes. Clin Infect Dis. 1997;24(Suppl 1):S110–20 Epub 1997/01/01.PubMedCrossRefGoogle Scholar
  131. 131.
    Hedberg M, Nord CE. Beta-lactam resistance in anaerobic bacteria: a review. J Chemother. 1996;8:3–16 Epub 1996/02/01.PubMedCrossRefGoogle Scholar
  132. 132.
    Citron DM, Tyrrell KL, Merriam V, Goldstein EJ. In vitro activity of ceftazidime-NXL104 against 396 strains of beta-lactamase-producing anaerobes. Antimicrob Agents Chemother. 2011;55:3616–20.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Dubreuil LJ, Mahieux S, Neut C, Miossec C, Pace J. Anti-anaerobic activity of a new beta-lactamase inhibitor NXL104 in combination with beta-lactams and metronidazole. Int J Antimicrob Agents. 2012;39:500–4.PubMedCrossRefGoogle Scholar
  134. 134.
    Goldstein EJ, Citron DM, Merriam CV, Tyrrell KL. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds. Diagn Microbiol Infect Dis. 2013;76:347–51.PubMedCrossRefGoogle Scholar
  135. 135.
    Dubee V, Bernut A, Cortes M, Lesne T, Dorchene D, Lefebvre AL, Hugonnet JE, Gutmann L, Mainardi JL, Herrmann JL, Gaillard JL, Kremer L, Arthur M. beta-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother. 2015;70:1051–8.PubMedGoogle Scholar
  136. 136.
    Lefebvre AL, Le Moigne V, Bernut A, Veckerle C, Compain F, Herrmann JL, Kremer L, Arthur M, Mainardi JL. Inhibition of the beta-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother. 2017;61 (Epub 2017/01/18).Google Scholar
  137. 137.
    Soroka D, Ourghanlian C, Compain F, Fichini M, Dubée V, Mainardi JL, Hugonnet JE, Arthur M. Inhibition of β-lactamases of mycobacteria by avibactam and clavulanate. J Antimicrob Chemother. 2017;72:1081–8.PubMedGoogle Scholar
  138. 138.
    Ourghanlian C, Soroka D, Arthur M. Inhibition by avibactam and clavulanate of the beta-lactamases KPC-2 and CTX-M-15 harboring the substitution N132G in the conserved SDN Motif. Antimicrob Agents Chemother. 2017;61 (Epub 2017/01/11).Google Scholar
  139. 139.
    Vishwanathan K, Mair S, Gupta A, Atherton J, Clarkson-Jones J, Edeki T, Das S. Assessment of the mass balance recovery and metabolite profile of avibactam in humans and in vitro drug–drug interaction potential. Drug Metab Dispos. 2014;42:932–42.PubMedCrossRefGoogle Scholar
  140. 140.
    Wenzler E, Bunnell KL, Bleasdale SC, Benken S, Danziger LH, Rodvold KA. Pharmacokinetics and dialytic clearance of ceftazidime-avibactam in a critically ill patient on continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2017;61 (Epub 2017/04/19).Google Scholar
  141. 141.
    Tarral A, Merdjan H. Effect of age and sex on the pharmacokinetics and safety of avibactam in healthy volunteers. Clin Ther. 2015;37:877–86.PubMedCrossRefGoogle Scholar
  142. 142.
    Merdjan H, Rangaraju M, Tarral A. Safety and pharmacokinetics of single and multiple ascending doses of avibactam alone and in combination with ceftazidime in healthy male volunteers: results of two randomized, placebo-controlled studies. Clin Drug Investig. 2015;35:307–17.PubMedCrossRefGoogle Scholar
  143. 143.
    Merdjan H, Tarral A, Das S, Li J. Phase 1 study assessing the pharmacokinetic profile and safety of avibactam in patients with renal impairment. J Clin Pharmacol. 2017;57:211–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Veillette JJ, Truong J, Forland SC. Pharmacokinetics of ceftazidime-avibactam in two patients with KPC-producing Klebsiella pneumoniae Bacteremia and renal impairment. Pharmacotherapy. 2016;36:172–7.CrossRefGoogle Scholar
  145. 145.
    Nicolau DP, Siew L, Armstrong J, Li J, Edeki T, Learoyd M, Das S. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother. 2015;70:2862–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Bensman TJ, Wang J, Jayne J, Fukushima L, Rao AP, D’Argenio DZ, Beringer PM. Pharmacokinetic–pharmacodynamic target attainment analyses to determine optimal dosing of ceftazidime-avibactam for the treatment of acute pulmonary exacerbations in patients with cystic fibrosis. Antimicrob Agents Chemother. 2017;61 (Epub 2017/08/09).Google Scholar
  147. 147.
    Meyer K, Santarossa M, Danziger LH, Wenzler E. Compatibility of ceftazidime-avibactam, ceftolozane-tazobactam, and piperacillin-tazobactam with vancomycin in dextrose 5% in water. Hosp Pharm. 2017;52:221–8 Epub 2017/04/26.PubMedCrossRefGoogle Scholar
  148. 148.
    Coleman K, Levasseur P, Girard AM, Borgonovi M, Miossec C, Merdjan H, Drusano G, Shlaes D, Nichols WW. Activities of ceftazidime and avibactam against beta-lactamase-producing Enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob Agents Chemother. 2014;58:3366–72.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Dallow J, Otterson LG, Huband MD, Krause KM, Nichols WW. Microbiological interaction studies between ceftazidime-avibactam and pulmonary surfactant and between ceftazidime-avibactam and antibacterial agents of other classes. Int J Antimicrob Agents. 2014;44:552–6.PubMedCrossRefGoogle Scholar
  150. 150.
    MacGowan A, Tomaselli S, Noel A. K. B. The pharmacodynamics of avibactam in combination with ceftaroline or ceftazidime against β-lactamase-producing Enterobacteriaceae studied in an in vitro model of infection. J Antimicrob Chemother. 2017;72:762–9.PubMedGoogle Scholar
  151. 151.
    Goh JH, Lee SY, Ooi ST, Lee Soon UL, Hee KH, Renaud CJ. Post-hemodialysis dosing of 1 vs. 2 g of ceftazidime in anuric end-stage renal disease patients on low-flux dialysis and its pharmacodynamic implications on clinical use. Hemodial Int. 2016;20:253–60.PubMedCrossRefGoogle Scholar
  152. 152.
    Buyck JM, Luyckx C, Muccioli GG, Krause KM, Nichols WW, Tulkens PM, Van Bambeke F. Pharmacodynamics of ceftazidime/avibactam against extracellular and intracellular forms of Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;72:1400–9 Epub 2017/02/01.PubMedGoogle Scholar
  153. 153.
    Sy SK, Zhuang L, Beaudoin ME, Kircher P, Tabosa MA, Cavalcanti NC, Grunwitz C, Pieper S, Schuck VJ, Nichols WW, Derendorf H. Potentiation of ceftazidime by avibactam against beta-lactam-resistant Pseudomonas aeruginosa in an in vitro infection model. J Antimicrob Chemother. 2017;72:1109–17 Epub 2017/01/13.PubMedGoogle Scholar
  154. 154.
    Pillar CM, Stoneburner A, Shinabarger DL, Krause KM, Nichols WW. The postantibiotic effect and post-beta-lactamase-inhibitor effect of ceftazidime, ceftaroline and aztreonam in combination with avibactam against target Gram-negative bacteria. Lett Appl Microbiol. 2016;63:96–102 Epub 2016/05/26.PubMedCrossRefGoogle Scholar
  155. 155.
    Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against beta-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58:5297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Endimiani A, Hujer KM, Hujer AM, Pulse ME, Weiss WJ, Bonomo RA. Evaluation of ceftazidime and NXL104 in two murine models of infection due to KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55:82–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Wiskirchen DE, Crandon JL, Furtado GH, Williams G, Nicolau DP. In vivo efficacy of a human-simulated regimen of ceftaroline combined with NXL104 against extended-spectrum-beta-lactamase (ESBL)-producing and non-ESBL-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2011;55:3220–5.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Crandon JL, Nicolau DP. Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging Gram-negative organisms, including metallo-beta-lactamase producers. Antimicrob Agents Chemother. 2013;57:3299–306.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, Nicolau DP. Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:6137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Monogue ML, Abbo LM, Rosa R, Camargo JF, Martinez O, Bonomo RA, Nicolau DP. In vitro discordance with in vivo activity: humanized exposures of ceftazidime-avibactam, aztreonam, and tigecycline alone and in combination against New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae in a Murine lung infection model. Antimicrob Agents Chemother. 2017;61 (Epub 2017/04/19).Google Scholar
  161. 161.
    Housman ST, Crandon JL, Nichols WW, Nicolau DP. Efficacies of ceftazidime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model. Antimicrob Agents Chemother. 2014;58:1365–71.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Rashid MU, Rosenborg S, Panagiotidis G, Lofdal KS, Weintraub A, Nord CE. Ecological effect of ceftazidime/avibactam on the normal human intestinal microbiota. Int J Antimicrob Agents. 2015;46:60–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Mendes RE, Castanheira M, Woosley LN, Stone GG, Bradford PA, Flamm RK. Molecular beta-lactamase characterization of aerobic Gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials for complicated intra-abdominal infections, with efficacies analyzed against susceptible and resistant subsets. Antimicrob Agents Chemother. 2017;61 (Epub 2017/03/30).Google Scholar
  164. 164.
    Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, Yates K, Gasink LB. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis. 2016;63:754–62 Epub 2016/06/18.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Stone GG, Bradford PA, Newell P, Wardman A. In vitro activity of ceftazidime-avibactam against isolates in a phase 3 open-label clinical trial for complicated intra-abdominal and urinary tract infections caused by ceftazidime-nonsusceptible Gram-negative pathogens. Antimicrob Agents Chemother. 2017;61 (Epub 2016/11/23).Google Scholar
  166. 166.
    Bradley JS, Armstrong J, Arrieta A, Bishai R, Das S, Delair S, Edeki T, Holmes WC, Li J, Moffett KS, Mukundan D, Perez N, Romero JR, Speicher D, Sullivan JE, Zhou D. Phase I study assessing the pharmacokinetic profile, safety, and tolerability of a single dose of ceftazidime-avibactam in hospitalized pediatric patients. Antimicrob Agents Chemother. 2016;60:6252–9 Epub 2016/08/10.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis. 2016;63:234–41.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Shields RK, Nguyen MH, Chen L, Press EG, Potoski BA, Marini RV, Doi Y, Kreiswirth BN, Clancy CJ. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae Bacteremia. Antimicrob Agents Chemother. 2017;61 (Epub 2017/06/01).Google Scholar
  169. 169.
    King M, Heil E, Kuriakose S, Bias T, Huang V, El-Beyrouty C, McCoy D, Hiles J, Richards L, Gardner J, Harrington N, Biason K, Gallagher JC. Multicenter Study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2017;61 (Epub 2017/05/10).Google Scholar
  170. 170.
    Caston JJ, Lacort-Peralta I, Martin-Davila P, Loeches B, Tabares S, Temkin L, Torre-Cisneros J, Pano-Pardo JR. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int J Infect Dis. 2017;59:118–23 Epub 2017/04/11.PubMedCrossRefGoogle Scholar
  171. 171.
    Krapp F, Grant JL, Sutton SH, Ozer EA, Barr VO. Treating complicated carbapenem-resistant enterobacteriaceae infections with ceftazidime/avibactam: a retrospective study with molecular strain characterisation. Int J Antimicrob Agents. 2017;49:770–3 Epub 2017/04/09.PubMedCrossRefGoogle Scholar
  172. 172.
    Satlin MJ, Chen L, Patel G, Gomez-Simmonds A, Weston G, Kim AC, Seo SK, Rosenthal ME, Sperber SJ, Jenkins SG, Hamula CL, Uhlemann AC, Levi MH, Fries BC, Tang YW, Juretschko S, Rojtman AD, Hong T, Mathema B, Jacobs MR, Walsh TJ, Bonomo RA, Kreiswirth BN. multicenter clinical and molecular epidemiological analysis of bacteremia due to carbapenem-resistant Enterobacteriaceae (CRE) in the CRE epicenter of the United States. Antimicrob Agents Chemother. 2017;61 (Epub 2017/02/09).Google Scholar
  173. 173.
    Temkin E, Torre-Cisneros J, Beovic B, Benito N, Giannella M, Gilarranz R, Jeremiah C, Loeches B, Machuca I, Jiménez-Martín M, Martínez JA, Mora-Rillo M, Navas E, Osthoff M, Pozo JC, Ramos Ramos JC, Rodriguez M, Sánchez-García M, Viale P, Wolff M, Carmeli Y. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob Agents Chemother. 2017;61:1916–64.Google Scholar
  174. 174.
    Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, Press EG, Kreiswirth BN, Clancy CJ, Nguyen MH. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–8.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Medicine, School of Health and BiosciencesPontifícia Universidade Católica do ParanáCuritibaBrazil
  2. 2.Scientific Medical DivisionAstraZenecaSão PauloBrazil
  3. 3.Hospital de Clínicas-Serviço de InfectologiaCuritibaBrazil

Personalised recommendations