Skip to main content

Human infectious diseases and risk of preeclampsia: an updated review of the literature

Abstract

Background

Preeclampsia (PE) is one of the major causes of maternal and perinatal morbidity and mortality, especially in low- and middle-income countries. In recent years, a growing body of literatures suggests that infections by bacteria, viruses, and parasites and their related inflammations play an important role in the pathogenesis of PE.

Methods

We searched PubMed, Google scholar, and Cochrane databases using the following search words: “infection and preeclampsia,” “bacterial infection and preeclampsia,” “viral infection and preeclampsia” and “parasitic infection and preeclampsia.”

Results

The literature review revealed that many bacteria including Helicobacter pylori, Chlamydia pneumonia, and those are involved in periodontal disease or urinary tract infections (UTIs) and some viral agents such as Cytomegalovirus, herpes simplex virus type-2, human immunodeficiency virus, and some parasites especially Plasmodium spp. and Toxoplasma gondii can be effective in development of PE. Inflammation responses against infections has major role in the inducement of PE. The shift of immunological cytokine profile of Th2 toward Th1 and high levels of pro-inflammatory cytokines (TNF-ɑ, IL-12, IFN-γ, etc.), increase of oxidative stress, increase of anti-angiogenic proteins, increase of vascular endothelial growth factor receptor 1 (sVEGFR1), and complement C5a are the main potential mechanisms related to infections and enhanced development of PE.

Conclusion

Thus, early diagnosis and treatment of bacterial, viral, and parasitic infections could be an effective strategy to reduce the incidence of PE.

This is a preview of subscription content, access via your institution.

References

  1. American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122:1122.

    Article  Google Scholar 

  2. Bilano VL, Ota E, Ganchimeg T, Mori R, Souza JP. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low-and middle-income countries: a WHO secondary analysis. PLoS One. 2014;9:e91198.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367:1066–74.

    PubMed  Article  Google Scholar 

  4. ACOG Committee on Obstetric Practice. Diagnosis and management of preeclampsia and eclampsia. Int J Gynecol Obstet. 2002;77:67–75.

    Article  Google Scholar 

  5. Lozano R, Wang H, Foreman KJ, Rajaratnam JK, Naghavi M, Marcus JR, Dwyer-Lindgren L, Lofgren KT, Phillips D, Atkinson C. Progress towards Millennium Development Goals 4 and 5 on maternal and child mortality: an updated systematic analysis. Lancet. 2011;378:1139–65.

    PubMed  Article  Google Scholar 

  6. Ahman E, Zupan J. Neonatal and perinatal mortality: country, regional and global estimates 2004. OMS. 2007;9241596147.

  7. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, Rubens C, Menon R, Van Look PF. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88:31–8.

    PubMed  Article  Google Scholar 

  8. Wardlaw TM. Low birthweight: country, regional and global estimates. Geneva: World Health Organization, UNICEF; 2004.

    Google Scholar 

  9. Bygbjerg I. Double burden of noncommunicable and infectious diseases in developing countries. Science. 2012;337:1499–501.

    CAS  PubMed  Article  Google Scholar 

  10. Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol. 2011;25:329–42.

    PubMed  Article  Google Scholar 

  11. Neu N, Duchon J, Zachariah P. TORCH infections. Clin Perinatol. 2015;42:77–103.

    PubMed  Article  Google Scholar 

  12. Yadav RK, Maity S, Saha S. A review on TORCH: groups of congenital infection during pregnancy. J Sci In Res. 2014;3(2):258–64.

    Google Scholar 

  13. De Francesco M, Corbellini S, Piccinelli G, Benini A, Ravizzola G, Gargiulo F, Caccuri F, Caruso A. A cluster of invasive listeriosis in Brescia, Italy. Infection. 2015;43:379.

    PubMed  Article  Google Scholar 

  14. Sen M, Shukla B, Tuhina B. Prevalence of serum antibodies to TORCH infection in and around Varanasi, Northern India. J Clin Diagn Res. 2012;6:1483.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Waldorf KMA, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146:151–62.

    Article  CAS  Google Scholar 

  16. Duijster JW, Goorhuis A, van Genderen PJ, Visser LG, Koopmans MP, Reimerink JH, Grobusch MP, van der Eijk AA, van den Kerkhof JHCT, Reusken CB, Hahné SJM. Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection. 2016;44:797–802.

    PubMed  PubMed Central  Article  Google Scholar 

  17. Nourollahpour Shiadeh M, Rostami A, Danesh M, Sajedi AA. Zika virus as new emerging global health threat for pregnancy and child birth. J Matern Fetal Neonatal Med. 2017;30:562.

    PubMed  Article  Google Scholar 

  18. Coyne CB, Lazear HM. Zika virus—reigniting the TORCH. Nat Rev Microbiol. 2016;14:707–15.

    CAS  PubMed  Article  Google Scholar 

  19. Boos V, Feiterna-Sperling C, Sarpong A, Garten L, Cremer M, von Weizsäcker K, Bührer C, Dame C. The rationale for third trimester testing of vertical HIV transmission in neonates with CMV infection. Infection. 2016;44(4):555–7.

    CAS  PubMed  Article  Google Scholar 

  20. Baroncelli S, Pirillo M, Amici R, Tamburrini E, Genovese O, Ravizza M, Maccabruni A, Masuelli G, Guaraldi G, Liuzzi G, Pinnetti C, Giacomet V, Degli Antoni A, Vimercati A, Dalzero S, Sacchi V, Floridia M. HCV–HIV coinfected pregnant women: data from a multicentre study in Italy. Infection. 2016;44:235–42.

    CAS  PubMed  Article  Google Scholar 

  21. Rustveld LO, Kelsey SF, Sharma R. Association between maternal infections and preeclampsia: a systematic review of epidemiologic studies. Matern Child Health J. 2008;12:223–42.

    PubMed  Article  Google Scholar 

  22. Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2008;198:7–22.

    PubMed  Article  Google Scholar 

  23. Heine RP, Ness RB, Roberts JM. Seroprevalence of antibodies to Chlamydia pneumoniae in women with preeclampsia. Obstet Gynecol. 2003;101:221–6.

    PubMed  Google Scholar 

  24. Dadelszen P, Magee LA, Krajden M, Alasaly K, Popovska V, Devarakonda RM, Money DM, Patrick DM, Brunham RC. Levels of antibodies against cytomegalovirus and Chlamydophila pneumoniae are increased in early onset pre-eclampsia. BJOG Int J Obstet Gynaecol. 2003;110:725–30.

    Article  Google Scholar 

  25. ÜstÜn Y, Engin-ÜstÜn Y, Özkaplan E, Otlu B, Sait TekerekoĞlu M. Association of Helicobacter pylori infection with systemic inflammation in preeclampsia. J Matern Fetal Neonatal Med. 2010;23:311–4.

    PubMed  Article  CAS  Google Scholar 

  26. Aksoy H, Ozkan A, Aktas F, Borekci B. Helicobacter pylori seropositivity and its relationship with serum malondialdehyde and lipid profile in preeclampsia. J Clin Lab Anal. 2009;23:219–22.

    CAS  PubMed  Article  Google Scholar 

  27. Pugliese A, Beltramo T, Todros T, Cardaropoli S, Ponzetto A. Interleukin-18 and gestosis: correlation with Helicobacter pylori seropositivity. Cell Biochem Funct. 2008;26:817–9.

    CAS  PubMed  Article  Google Scholar 

  28. Xie F, Hu Y, Magee LA, Money DM, Patrick DM, Krajden M, Thomas E, Von Dadelszen P, Group TS. An association between cytomegalovirus infection and pre-eclampsia: a case–control study and data synthesis. Acta Obstet Gynecol Scand. 2010;89:1162–7.

    PubMed  Article  Google Scholar 

  29. DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, Kim CJ, Erez O, Edwin S, Relman DA. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3:e3056.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;353:1899–911.

    CAS  PubMed  Article  Google Scholar 

  31. Menard JP, Mazouni C, Salem-Cherif I, Fenollar F, Raoult D, Boubli L, Gamerre M, Bretelle F. High vaginal concentrations of Atopobium vaginae and Gardnerella vaginalis in women undergoing preterm labor. Obstet Gynecol. 2010;115:134–40.

    PubMed  Article  Google Scholar 

  32. Hsu C, Witter F. Urogenital infection in preeclampsia. Int J Gynecol Obstet. 1995;49:271–5.

    CAS  Article  Google Scholar 

  33. Gilbert GL, Garland SM, Fairley KF, Mcdowall RD. Bacteriuria due to ureaplasmas and other fastidious organisms during pregnancy: prevalence and significance. Pediatr Infect Dis J. 1986;5:239–43.

    Article  Google Scholar 

  34. Minassian C, Thomas SL, Williams DJ, Campbell O, Smeeth L. Acute maternal infection and risk of pre-eclampsia: a population-based case–control study. PLoS One. 2013;8:e73047.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Easter SR, Cantonwine DE, Zera CA, Lim K-H, Parry SI, McElrath TF. Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia. Am J Obstet Gynecol. 2016;214:381–7.

    Google Scholar 

  36. Glaser AP, Schaeffer AJ. Urinary tract infection and bacteriuria in pregnancy. Urol Clin North Am. 2015;42:547–60.

    PubMed  Article  Google Scholar 

  37. Agger WA, Siddiqui D, Lovrich SD, Callister SM, Borgert AJ, Merkitch KW, Mason TC, Baumgardner DJ, Burmester JK, Shukla SK. Epidemiologic factors and urogenital infections associated with preterm birth in a midwestern US population. Obstet Gynecol. 2014;124:969–77.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Cohen I, Veille J-C, Calkins BM. Improved pregnancy outcome following successful treatment of chlamydial infection. JAMA. 1990;263:3160–3.

    CAS  PubMed  Article  Google Scholar 

  39. Haggerty CL, Klebanoff MA, Panum I, Uldum SA, Bass DC, Olsen J, Roberts JM, Ness RB. Prenatal Chlamydia trachomatis infection increases the risk of preeclampsia. Pregnancy Hypertens. 2013;3:151–4.

    PubMed  PubMed Central  Google Scholar 

  40. Herrera J, Chaudhuri G, López-Jaramillo P. Is infection a major risk factor for preeclampsia? Med Hypotheses. 2001;57:393–7.

    CAS  PubMed  Article  Google Scholar 

  41. Guthmiller J, Novak K. Chapter 8, Periodontal diseases. In: Brogden KA, Guthmiller JM, editors. Polymicrobial diseases. Washington (DC): ASM Press; 2002.

    Google Scholar 

  42. Contreras A, Herrera J, Soto J, Arce R, Jaramillo A, Botero J. Periodontitis is associated with preeclampsia in pregnant women. J Periodontol. 2006;77:182–8.

    CAS  PubMed  Article  Google Scholar 

  43. Wei B-J, Chen Y-J, Yu L, Wu B. Periodontal disease and risk of preeclampsia: a meta-analysis of observational studies. PLoS One. 2013;8:e70901.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Mazor-Dray E, Levy A, Schlaeffer F, Sheiner E. Maternal urinary tract infection: is it independently associated with adverse pregnancy outcome? J Matern Fetal Neonatal Med. 2009;22:124–8.

    PubMed  Article  Google Scholar 

  45. Shamsi U, Hatcher J, Shamsi A, Zuberi N, Qadri Z, Saleem S. A multicentre matched case control study of risk factors for preeclampsia in healthy women in Pakistan. BMC Women Health. 2010;10:14.

    Article  Google Scholar 

  46. Lohsoonthorn V, Kungsadalpipob K, Chanchareonsook P, Limpongsanurak S, Vanichjakvong O, Sutdhibhisal S, Sookprome C, Wongkittikraiwan N, Kamolpornwijit W, Jantarasaengaram S. Maternal periodontal disease and risk of preeclampsia: a case–control study. Am J Hypertens. 2009;22:457–63.

    PubMed  Article  Google Scholar 

  47. Shetty M, Shetty PK, Ramesh A, Thomas B, Prabhu S, Rao A. Periodontal disease in pregnancy is a risk factor for preeclampsia. Acta Obstet Gynecol Scand. 2010;89:718–21.

    PubMed  Article  Google Scholar 

  48. Politano G, Passini R, Nomura M, Velloso L, Morari J, Couto E. Correlation between periodontal disease, inflammatory alterations and pre-eclampsia. J Periodontal Res. 2011;46:505–11.

    CAS  PubMed  Article  Google Scholar 

  49. Moura da Silva G, Coutinho SB, Piscoya MDB, Ximenes RA, Jamelli SR. Periodontitis as a risk factor for preeclampsia. J Periodontol. 2012;83:1388–96.

    PubMed  Article  Google Scholar 

  50. Taghzouti N, Xiong X, Gornitsky M, Chandad F, Voyer R, Gagnon G, Leduc L, Xu H, Tulandi T, Wei B. Periodontal disease is not associated with preeclampsia in Canadian pregnant women. J Periodontol. 2012;83:871–7.

    PubMed  Article  Google Scholar 

  51. Kumar A, Basra M, Begum N, Rani V, Prasad S, Lamba AK, Verma M, Agarwal S, Sharma S. Association of maternal periodontal health with adverse pregnancy outcome. J Obstet Gynaecol Res. 2013;39:40–5.

    PubMed  Article  Google Scholar 

  52. Xie F, Hu Y, Magee LA, Money DM, Patrick DM, Brunham RM, Thomas E, von Dadelszen P. Chlamydia pneumoniae infection in preeclampsia. Hypertens Pregnancy. 2010;29:468–77.

    CAS  PubMed  Article  Google Scholar 

  53. Karinen L, Leinonen M, Bloigu A, Paldanius M, Koskela P, Saikku P, Hartikainen A-L, Järvelin M-R, Pouta A. Maternal serum Chlamydia pneumoniae antibodies and CRP levels in women with preeclampsia and gestational hypertension. Hypertens Pregnancy. 2008;27:143–58.

    CAS  PubMed  Article  Google Scholar 

  54. Raynor BD, Bonney EA, Jang KT, Coto W, Garcia MS. Preeclampsia and Chlamydia pneumoniae: is there a link? Hypertens Pregnancy. 2004;23:129–34.

    CAS  PubMed  Article  Google Scholar 

  55. Goulis DG, Chappell L, Gibbs RG, Williams D, Dave JR, Taylor P, De Swiet M, Poston L, Williamson C. Association of raised titres of antibodies to Chlamydia pneumoniae with a history of pre-eclampsia. BJOG Int J Obstet Gynaecol. 2005;112:299–305.

    Article  Google Scholar 

  56. Chrisoulidou A, Goulis DG, Iliadou PK, Dave JR, Bili H, Simms C, Redman CW, Williamson C. Acute and chronic Chlamydia pneumoniae infection in pregnancy complicated with preeclampsia. Hypertens Pregnancy. 2011;30:164–8.

    PubMed  Article  Google Scholar 

  57. Ponzetto A, Cardaropoli S, Piccoli E, Rolfo A, Gennero L, Kanduc D, Todros T. Pre-eclampsia is associated with Helicobacter pylori seropositivity in Italy. J Hypertens. 2006;24:2445–9.

    CAS  PubMed  Article  Google Scholar 

  58. Cardaropoli S, Rolfo A, Piazzese A, Ponzetto A, Todros T. Helicobacter pylori’s virulence and infection persistence define pre-eclampsia complicated by fetal growth retardation. World J Gastroenterol. 2011;17:5156–65.

    PubMed  PubMed Central  Article  Google Scholar 

  59. Mosbah A, Nabiel Y. Helicobacter pylori, Chlamydiae pneumoniae and trachomatis as probable etiological agents of preeclampsia. J Matern Fetal Neonatal Med. 2016;29:1607–12.

    CAS  PubMed  Article  Google Scholar 

  60. Rădulescu C, Bacârea A, Huţanu A, Şincu N, Băţagă S. Helicobacter pylori infection and pre-eclampsia in a Romanian study group. Int J Gynecol Obstet. 2016;135:328–9.

    Article  Google Scholar 

  61. Di Simone N, Tersigni C, Cardaropoli S, Franceschi F, Di Nicuolo F, Castellani R, Bugli F, Waure C, Cavaliere AF, Gasbarrini A. Helicobacter pylori infection contributes to placental impairment in preeclampsia: basic and clinical evidences. Helicobacter. 2017;22:2. doi:10.1111/hel.12347.

    Article  CAS  Google Scholar 

  62. Graham DY, Yamaoka Y. Disease-specific helicobacter pylori virulence factors: the unfulfilled promise. Helicobacter. 2000;5:3–9.

    Article  Google Scholar 

  63. Gomez LM, Parry S. Trophoblast infection with Chlamydia pneumoniae and adverse pregnancy outcomes associated with placental dysfunction. Am J Obstet Gynecol. 2009;200:521–6.

    Article  Google Scholar 

  64. Haggerty CL, Panum I, Uldum SA, Bass DC, Olsen J, Darville T, Eastman JM, Simhan HN, Roberts JM, Ness RB. Chlamydia trachomatis infection may increase the risk of preeclampsia. Pregnancy Hypertens. 2013;3:28–33.

    PubMed  Google Scholar 

  65. Hollander WJ, Schalekamp-Timmermans S, Holster IL, Jaddoe VW, Hofman A, Moll HA, Perez-Perez GI, Blaser MJ, Steegers EA, Kuipers EJ. Helicobacter pylori colonization and pregnancies complicated by preeclampsia, spontaneous prematurity, and small for gestational age birth. Helicobacter. 2017;22:2. doi:10.1111/hel.12364.

    Google Scholar 

  66. Elkhouly NI, Elkelani OA, Elhalaby AF, Shabana AA. Relation between Helicobacter pylori infection and severe pre-eclampsia complicated by intrauterine growth restriction in a rural area in Egypt. J Obstet Gynaecol. 2016;36:1046–9.

    CAS  PubMed  Article  Google Scholar 

  67. Xie F, Dadelszen P, Nadeau J. CMV infection, TLR-2 and-4 expression, and cytokine profiles in early-onset preeclampsia with HELLP syndrome. Am J Reprod Immunol. 2014;71:379–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Arechavaleta-Velasco F, Ma Y, Zhang J, McGrath CM, Parry S. Adeno-associated virus-2 (AAV-2) causes trophoblast dysfunction, and placental AAV-2 infection is associated with preeclampsia. Am J Pathol. 2006;168:1951–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Arechavaleta-Velasco F, Gomez L, Ma Y, Zhao J, McGrath C, Sammel M, Nelson D, Parry S. Adverse reproductive outcomes in urban women with adeno-associated virus-2 infections in early pregnancy. Hum Reprod. 2008;23:29–36.

    CAS  PubMed  Article  Google Scholar 

  70. Rustveld L, Ness R, Costantino J, Roberts J. Serological association between primary infections with herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV) and Epstein Barr virus (EBV) and the risk of preeclampsia. Am J Epidemiol. 2003;157:S74.

    Article  Google Scholar 

  71. Trogstad LI, Eskild A, Bruu AL, Jeansson S, Jenum PA. Is preeclampsia an infectious disease? Acta Obstet Gynecol Scand. 2001;80:1036–8.

    CAS  PubMed  Article  Google Scholar 

  72. Suy A, Martínez E, Coll O, Lonca M, Palacio M, de Lazzari E, Larrousse M, Milinkovic A, Hernández S, Blanco JL. Increased risk of pre-eclampsia and fetal death in HIV-infected pregnant women receiving highly active antiretroviral therapy. AIDS. 2006;20:59–66.

    PubMed  Article  Google Scholar 

  73. Wimalasundera R, Larbalestier N, Smith J, De Ruiter A, Thom SM, Hughes A, Poulter N, Regan L, Taylor G. Pre-eclampsia, antiretroviral therapy, and immune reconstitution. Lancet. 2002;360:1152–4.

    CAS  PubMed  Article  Google Scholar 

  74. Boer K, Nellen J, Patel D, Timmermans S, Tempelman C, Wibaut M, Sluman M, Van Der Ende M, Godfried M. The AmRo study: pregnancy outcome in HIV-1-infected women under effective highly active antiretroviral therapy and a policy of vaginal delivery. BJOG Int J Obstet Gynaecol. 2007;114:148–55.

    CAS  Article  Google Scholar 

  75. De Groot M, Corporaal L, Cronje H, Joubert G. HIV infection in critically ill obstetrical patients. Int J Obstet Gynaecol. 2003;81:9–16.

    Article  Google Scholar 

  76. Frank KA, Buchmann EJ, Schackis RC. Does human immunodeficiency virus infection protect against preeclampsia-eclampsia? Obstetr Gynecol. 2004;104:238–42.

    CAS  Article  Google Scholar 

  77. Calvert C, Ronsmans C. HIV and the risk of direct obstetric complications: a systematic review and meta-analysis. PLoS One. 2013;8:e74848.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Strand K, Odland M, Iversen AC, Nordbø S, Vik T, Austgulen R. Cytomegalovirus antibody status at 17–18 weeks of gestation and pre-eclampsia: a case–control study of pregnant women in Norway. BJOG Int J Obstet Gynaecol. 2012;119:1316–23.

    CAS  Article  Google Scholar 

  79. Haeri S, Shauer M, Dale M, Leslie J, Baker AM, Saddlemire S, Boggess K. Obstetric and newborn infant outcomes in human immunodeficiency virus–infected women who receive highly active antiretroviral therapy. Am J Obstet Gynecol. 2009;201:311–5.

    Article  Google Scholar 

  80. Boyajian T, Shah PS, Murphy KE. Risk of preeclampsia in HIV-positive pregnant women receiving HAART: a matched cohort study. J Obstet Gynaecol Can. 2012;34:136–41.

    PubMed  Article  Google Scholar 

  81. Kalumba V, Moodley J, Naidoo T. Is the prevalence of pre-eclampsia affected by HIV/AIDS? A retrospective case-control study: cardiovascular topics. Cardiovasc J Afr. 2013;24:24–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Hall D, Gebhardt S, Theron G, Grové D. Pre-eclampsia and gestational hypertension are less common in HIV infected women. Pregnancy Hypertens. 2014;4:91–6.

    PubMed  Google Scholar 

  83. Landi B, Bezzeccheri V, Guerra B, Piemontese M, Cervi F, Cecchi L, Margarito E, Giannubilo SR, Ciavattini A, Tranquilli AL. HIV infection in pregnancy and the risk of gestational hypertension and preeclampsia. World J Cardiovasc Dis. 2014;4:257–67.

    Article  Google Scholar 

  84. Sansone M, Sarno L, Saccone G, Berghella V, Maruotti GM, Migliucci A, Capone A, Martinelli P. Risk of preeclampsia in human immunodeficiency virus-infected pregnant women. Obstet Gynecol. 2016;127:1027–32.

    CAS  PubMed  Article  Google Scholar 

  85. Roberts J, Cooper D. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53–6.

    CAS  PubMed  Article  Google Scholar 

  86. Kalayoglu MV, Byrne GI. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis. 1998;177:725–9.

    CAS  PubMed  Article  Google Scholar 

  87. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    CAS  PubMed  Article  Google Scholar 

  88. Ross R. Atherosclerosis—an inflammatory disease. New Engl J Med. 1999;340:115–26.

    CAS  PubMed  Article  Google Scholar 

  89. Rinehart BK, Terrone DA, Lagoo-Deenadayalan S, Barber WH, Martin JN, Bennett WA. Expression of the placental cytokines tumor necrosis factor α, interleukin 1β, and interleukin 10 is increased in preeclampsia. Am J Obstet Gynecol. 1999;181:915–20.

    CAS  PubMed  Article  Google Scholar 

  90. Amory JH, Hitti J, Lawler R, Eschenbach DA. Increased tumor necrosis factor-α production after lipopolysaccharide stimulation of whole blood in patients with previous preterm delivery complicated by intra-amniotic infection or inflammation. Am J Obstet Gynecol. 2001;185:1064–7.

    CAS  PubMed  Article  Google Scholar 

  91. Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP. Expression of inflammatory cytokines in placentas from women with preeclampsia 1. J Clin Endocrinol Metabol. 2001;86:2505–12.

    CAS  Google Scholar 

  92. Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P. Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynecol Obstet. 2001;75:243–9.

    CAS  Article  Google Scholar 

  93. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9:480–5.

    CAS  PubMed  Article  Google Scholar 

  94. López-Jaramillo P, Casas J, Serrano N. Preeclampsia: from epidemiological observations to molecular mechanisms. Braz J Med Biol Res. 2001;34:1227–35.

    PubMed  Article  Google Scholar 

  95. Davidge ST. Oxidative stress and altered endothelial cell function in preeclampsia. Seminars in reproductive endocrinology. Stuttgart: Thieme Medical Publishers Inc; 1998. p. 65–73.

    Google Scholar 

  96. Belayet HM, Kanayama N, Khatun S, El Maradny E, Masui M, Tokunaga N, Sumimoto K, Kobayashi T, Terao T. Decreased renal and hepatic blood flow with preeclampsia-like histologic changes was obtained by stimulation of the celiac ganglion with LPS. Am J Perinatol. 1998;15:109–14.

    CAS  PubMed  Article  Google Scholar 

  97. López-Jaramillo P, Herrera JA, Arenas-Mantilla M, Jáuregui IE, Mendoza MA. Subclinical infection as a cause of inflammation in preeclampsia. Am J Ther. 2008;15:373–6.

    PubMed  Article  Google Scholar 

  98. Cardaropoli S, Rolfo A, Todros T. Helicobacter pylori and pregnancy-related disorders. World J Gastroenterol. 2014;20:654.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. Franceschi F, Di Simone N, D’ippolito S, Castellani R, Di Nicuolo F, Gasbarrini G, Yamaoka Y, Todros T, Scambia G, Gasbarrini A. Antibodies Anti-Caga Cross-React with Trophoblast Cells: A Risk Factor for Pre-Eclampsia? Helicobacter. 2012;17(6):426–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Franceschi F, Niccoli G, Ferrante G, Gasbarrini A, Baldi A, Candelli M, Feroce F, Saulnier N, Conte M, Roccarina D, Lanza GA, Gasbarrini G, Gentiloni SN, Crea F. CagA antigen of Helicobacter pylori and coronary instability: insight from a clinico-pathological study and a meta-analysis of 4241 cases. Atherosclerosis. 2009;202:535–42.

    CAS  PubMed  Article  Google Scholar 

  101. Shiadeh Nourollahpour. Niyyati M, Fallahi S, Rostami A. Human parasitic protozoan infection to infertility: a systematic review. Parasitol Res. 2016;115:469–77.

    PubMed  Article  Google Scholar 

  102. Rostami A, Seyyedtabaei SJ, Aghamolaie S, Behniafar H, Lasjerdi Z, Abdolrasouli A, Mehravar S, Alvarado-Esquivel C. Seroprevalence and risk factors associated with Toxoplasma gondii infection among rural communities in Northern IRAN. Rev Inst Med Trop Sao Paulo. 2016;58:70.

    PubMed  PubMed Central  Article  Google Scholar 

  103. Nourollahpour Shiadeh M, Rostami A, Pearce B, Gholipourmalekabadi M, Newport D, Danesh M, et al. The correlation between Toxoplasma gondii infection and prenatal depression in pregnant women. Eur J Clin Microbiol Infect Dis. 2016;35:1829–35.

    CAS  PubMed  Article  Google Scholar 

  104. Rostami A, Keshavarz H, Shojaee S, Mohebali M, Meamar AR. Frequency of Toxoplasma gondii in HIV Positive Patients from West of Iran by ELISA and PCR. Iran J Parasitol. 2014;9(4):474–81.

    PubMed  PubMed Central  Google Scholar 

  105. Todros T, Verdiglione P, Oggè G, Paladini D, Vergani P, Cardaropoli S. Low incidence of hypertensive disorders of pregnancy in women treated with spiramycin for Toxoplasma infection. Br J Clin Pharmacol. 2006;61:336–40.

    CAS  PubMed  Article  Google Scholar 

  106. Alvarado-Esquivel C, Vázquez-Alaníz F, Sandoval-Carrillo AA, Salas-Pacheco JM, Hernández-Tinoco J, Sánchez-Anguiano LF, Liesenfeld O. Lack of association between Toxoplasma gondii infection and hypertensive disorders in pregnancy: a case–control study in a Northern Mexican population. Parasites Vectors. 2014;7:1.

    Article  CAS  Google Scholar 

  107. Fichorova RN. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J Reprod Immunol. 2009;2009(83):185–9.

    Article  CAS  Google Scholar 

  108. Than NG, Erez O, Wildman DE, Tarca AL, Edwin SS, Abbas A, Hotra J, Kusanovic JP, Gotsch F, Hassan SS. Severe preeclampsia is characterized by increased placental expression of galectin-1. J Matern Fetal Neonat Med. 2008;21:429–42.

    CAS  Article  Google Scholar 

  109. Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun. 2006;74:5773–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7:e1000221.

    PubMed  PubMed Central  Article  Google Scholar 

  111. van Eijk AM, Hill J, Noor AM, Snow RW, ter Kuile FO. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health. 2015;3:617–28.

    Article  Google Scholar 

  112. Brabin BJ, Johnson PM. Placental malaria and pre-eclampsia through the looking glass backwards? J Reprod Immunol. 2005;65:1–15.

    PubMed  Article  Google Scholar 

  113. Etard J-F, Kodio B, Ronsmans C. Seasonal variation in direct obstetric mortality in rural Senegal: role of malaria? Am J Trop Med Hyg. 2003;68:503–4.

    CAS  PubMed  Google Scholar 

  114. Anya SE. Seasonal variation in the risk and causes of maternal death in the Gambia: malaria appears to be an important factor. Am J Trop Med Hyg. 2004;70:510–3.

    PubMed  Google Scholar 

  115. Muehlenbachs A, Mutabingwa TK, Edmonds S, Fried M, Duffy PE. Hypertension and maternal–fetal conflict during placental malaria. PLoS Med. 2006;3:e446.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. Hlimi T. Association of anemia, pre-eclampsia and eclampsia with seasonality: a realist systematic review. Health Place. 2015;31:180–92.

    PubMed  Article  Google Scholar 

  117. Sartelet H, Rogier C, Milko-Sartelet I, Angel G, Michel G. Malaria associated pre-eclampsia in Senegal. Lancet. 1996;347:1121.

    CAS  PubMed  Article  Google Scholar 

  118. Ekeleme Uzochukwu G, Kama Ugochukwu H, Otutu Elijah A, Ajunwa Kelechi V, Oha Ndubuisi OC, Ndimele Eugene C. Studies on the infections of Malaria, Human Immunodeficiency Virus and Hepatitis B Virus among Secondary School Students in Enugu West. Int J Sci Res Publ. 2016;6:36–43.

    Google Scholar 

  119. Ndao CT, Dumont A, Fievet N, Doucouré S, Gaye A, Lehesran J-Y. Placental malarial infection as a risk factor for hypertensive disorders during pregnancy in Africa: a case-control study in an urban area of Senegal, West Africa. Am J Epidemiol. 2009;170:847–53.

    CAS  PubMed  Article  Google Scholar 

  120. Adam I, Elhassan EM, Mohmmed AA, Salih MM, Elbashir MI. Malaria and pre-eclampsia in an area with unstable malaria transmission in Central Sudan. Malar J. 2011;10:1.

    Article  Google Scholar 

  121. Dorman E, Shulman C, Kingdom J, Bulmer J, Mwendwa J, Peshu N, Marsh K. Impaired uteroplacental blood flow in pregnancies complicated by falciparum malaria. Ultrasound Obstet Gynecol. 2002;19:165–70.

    CAS  PubMed  Article  Google Scholar 

  122. Conroy AL, Silver KL, Zhong K, Rennie M, Ward P, Sarma JV, Molyneux ME, Sled J, Fletcher JF, Rogerson S. Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe. 2013;13:215–26.

    CAS  PubMed  Article  Google Scholar 

  123. Muehlenbachs A, Fried M, Lachowitzer J, Mutabingwa TK, Duffy PE. Natural selection of FLT1 alleles and their association with malaria resistance in utero. Proc Natl Acad Sci. 2008;105:14488–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Conroy A, Serghides L, Finney C, Owino SO, Kumar S, Gowda DC, Liles WC, Moore JM, Kain KC. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One. 2009;4:e4953.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. Muehlenbachs A, Fried M, Lachowitzer J, Mutabingwa TK, Duffy PE. Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. J Immunol. 2007;179:557–65.

    CAS  PubMed  Article  Google Scholar 

  126. Soto E, Romero R, Richani K, Espinoza J, Chaiworapongsa T, Nien JK, Edwin SS, Kim YM, Hong JS, Goncalves LF. Preeclampsia and pregnancies with small-for-gestational age neonates have different profiles of complement split products. J Matern Fetal Neonatal Med. 2010;23:646–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Asp Med. 2007;28:192–209.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hamed Behniafar, for his assistance in the preparation of this manuscript.

Funding

There are no funding sources for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical approval

This study received the approval from the Shahid Beheshti University of Medical Science Ethical Committee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nourollahpour Shiadeh, M., Behboodi Moghadam, Z., Adam, I. et al. Human infectious diseases and risk of preeclampsia: an updated review of the literature. Infection 45, 589–600 (2017). https://doi.org/10.1007/s15010-017-1031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1031-2

Keywords

  • Preeclampsia
  • Infections
  • Inflammation
  • Cytokine