, Volume 44, Issue 3, pp 309–321 | Cite as

Factors influencing antimicrobial resistance and outcome of Gram-negative bloodstream infections in children

  • Balázs Ivády
  • Éva Kenesei
  • Péter Tóth-Heyn
  • Gabriella Kertész
  • Klára Tárkányi
  • Csaba Kassa
  • Enikő Ujhelyi
  • Borbála Mikos
  • Erzsébet Sápi
  • Krisztina Varga-Heier
  • Gábor Guóth
  • Dóra Szabó
Original Paper



The aim of this study was to collect data about pediatric Gram-negative bloodstream infections (BSI) to determine the factors that influence multidrug resistance (MDR), clinical course and outcome of children affected by Gram-negative sepsis.


In this observational, prospective, multicenter study we collected cases of pediatric Gram-negative BSI during a 2-year period. We analyzed epidemiological, microbiological and clinical factors that associated with acquisition of MDR infections and outcome.


One-hundred and thirty-five BSI episodes were analyzed. Median age of children was 0.5 years (IQR 0.1–6.17, range 0–17 years). Predominant bacteria were Enterobacteriaceae (68.3 %), and Pseudomonas spp. (17.9 %). Multidrug resistance was detected in 45/134 cases (33.6 %), with the highest rates in Escherichia coli, Enterobacter and Pseudomonas spp. Acquisition of MDR pathogens was significantly associated with prior cephalosporin treatment, older age, admission to hemato-oncology unit, polymicrobial infections, higher rate of development of septic shock, and multiple organ failures. All-cause mortality was 17.9 %. Presence of septic shock at presentation and parenteral nutrition were associated with higher mortality. Pseudomonas spp., and Enterobacter spp. BSIs had the highest rate of mortality. Inappropriate empiric antibiotic therapy was more frequent in MDR patients, although not significantly associated with poor outcome.


Rates of multidrug resistance and mortality in children with Gram-negative bloodstream infections remain high in our settings. Empiric broad-spectrum antibiotics and combination therapy could be recommended, especially in children with malignant diseases, patients admitted to the PICU, and for cases with septic shock, who have higher mortality risk.


Bloodstream infection Pediatric Gram negative Sepsis Outcome Multidrug resistant 



The authors thank the patients and their parents for giving their consent to our study. We are very grateful to Natasa Pesti, Krisztina Németh, Klára Tóth, Mária Szénási, Judit Ventilla, Miklós Szabó, MD, Gabriella Kiss, MD, Emőke Székely, MD, András Szatmári, MD, Csaba Vilmányi, MD, János Sinkó, MD, Gábor Kovács, MD, Gergely Kriván, MD, Lídia Balogh, MD, István Máttyus, MD, András Trethon, MD, Marianne Konkoly-Thege, MD, Katalin Kamotsay, MD, Katalin Kristóf, MD and to all nurses, colleagues, and assistants of departments and laboratories that participated in this study for their contribution. This study was financially supported by the Hungarian Research Fund, OTKA K 108481.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This study has been approved by the Scientific and Research Ethics Council of the Hungarian Medical Research Council under the reference number 845-0/2010-1018EKU (39/PI/010). Informed consent has been attained from the parents of all infants and children whose clinical data have been used in this study.


  1. 1.
    Anderson DJ, Moehring RW, Sloane R, Schmader KE, Weber DJ, Fowler VG Jr, et al. Bloodstream infections in community hospitals in the 21st century: a multicenter cohort study. PLoS One. 2014;9:e91713. doi: 10.1371/journal.pone.0091713.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis*. Pediatr Crit Care Med. 2013;14:686–93. doi: 10.1097/PCC.0b013e3182917fad.CrossRefPubMedGoogle Scholar
  3. 3.
    Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebbar KB. Pediatric severe sepsis: current trends and outcomes from the pediatric health information systems database*. Pediatr Crit Care Med. 2014;15:828–38. doi: 10.1097/pcc.0000000000000254.CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Hasan MN, Eckel-Passow JE, Baddour LM. Impact of healthcare-associated acquisition on community-onset Gram-negative bloodstream infection: a population-based study: healthcare-associated Gram-negative BSI. Eur J Clin Microbiol Infect Dis. 2012;31:1163–71. doi: 10.1007/s10096-011-1424-6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pop-Vicas A, Opal SM. The clinical impact of multidrug-resistant gram-negative bacilli in the management of septic shock. Virulence. 2014;5:206–12. doi: 10.4161/viru.26210.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Saied T, Elkholy A, Hafez SF, Basim H, Wasfy MO, El-Shoubary W, et al. Antimicrobial resistance in pathogens causing nosocomial bloodstream infections in university hospitals in Egypt. Am J Infect Control. 2011;39:e61–5. doi: 10.1016/j.ajic.2011.04.009.CrossRefPubMedGoogle Scholar
  7. 7.
    Ben Jaballah N, Bouziri A, Mnif K, Hamdi A, Khaldi A, Kchaou W. Epidemiology of hospital-acquired bloodstream infections in a Tunisian pediatric intensive care unit: a 2-year prospective study. Am J Infect Control. 2007;35:613–8. doi: 10.1016/j.ajic.2006.09.007.CrossRefPubMedGoogle Scholar
  8. 8.
    Ares MA, Alcantar-Curiel MD, Jimenez-Galicia C, Rios-Sarabia N, Pacheco S, De la Cruz MA. Antibiotic resistance of gram-negative bacilli isolated from pediatric patients with nosocomial bloodstream infections in a Mexican tertiary care hospital. Chemotherapy. 2013;59:361–8. doi: 10.1159/000362085.PubMedGoogle Scholar
  9. 9.
    Lye DC, Earnest A, Ling ML, Lee TE, Yong HC, Fisher DA, et al. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: cohort study. Clin Microbiol Infect. 2012;18:502–8. doi: 10.1111/j.1469-0691.2011.03606.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsai MH, Chu SM, Hsu JF, Lien R, Huang HR, Chiang MC, et al. Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics. 2014;133:e322–9. doi: 10.1542/peds.2013-1248.CrossRefPubMedGoogle Scholar
  11. 11.
    Tabah A, Koulenti D, Laupland K, Misset B, Valles J, Bruzzi de Carvalho F, et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med. 2012;38:1930–45. doi: 10.1007/s00134-012-2695-9.CrossRefPubMedGoogle Scholar
  12. 12.
    Lutsar I, Chazallon C, Carducci FI, Trafojer U, Abdelkader B, de Cabre VM, et al. Current management of late onset neonatal bacterial sepsis in five European countries. Eur J Pediatr. 2014;173:997–1004. doi: 10.1007/s00431-014-2279-5.PubMedGoogle Scholar
  13. 13.
    Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A, Lamagni T, et al. Trends among pathogens reported as causing bacteraemia in England, 2004–2008. Clin Microbiol Infect. 2011;17:451–8. doi: 10.1111/j.1469-0691.2010.03262.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Trecarichi EM, Pagano L, Candoni A, Pastore D, Cattaneo C, Fanci R, et al. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective survey. Clin Microbiol Infect. 2014. doi: 10.1016/j.cmi.2014.11.022.Google Scholar
  15. 15.
    Al-Hasan MN, Huskins WC, Lahr BD, Eckel-Passow JE, Baddour LM. Epidemiology and outcome of Gram-negative bloodstream infection in children: a population-based study. Epidemiol Infect. 2011;139:791–6. doi: 10.1017/s0950268810001640.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Folgori L, Livadiotti S, Carletti M, Bielicki J, Pontrelli G, Ciofi Degli Atti ML, et al. Epidemiology and clinical outcomes of multidrug-resistant, Gram-negative bloodstream infections in a European Tertiary Pediatric Hospital During a 12-month period. Pediatr Infect Dis J. 2014;33:929–32. doi: 10.1097/inf.0000000000000339.CrossRefPubMedGoogle Scholar
  17. 17.
    Mitt P, Adamson V, Loivukene K, Lang K, Telling K, Paro K, et al. Epidemiology of nosocomial bloodstream infections in Estonia. J Hosp Infect. 2009;71:365–70. doi: 10.1016/j.jhin.2009.01.008.CrossRefPubMedGoogle Scholar
  18. 18.
    Caini S, Hajdu A, Kurcz A, Borocz K. Hospital-acquired infections due to multidrug-resistant organisms in Hungary, 2005–2010. Euro Surveill. 2013;18:13–20.Google Scholar
  19. 19.
    Sinko J, Cser V, Konkoly Thege M, Masszi T. Gram-negative bacteremia in neutropenic patients with hematologic disorders. Experiences with prophylactic use of fluoroquinolones. Orv Hetil. 2011;152:1063–7. doi: 10.1556/oh.2011.29150.CrossRefPubMedGoogle Scholar
  20. 20.
    Gal Z, Szabo D, Kovacs P, Hernadi F, Toth-Martinez B, Rozgonyi F. beta-lactam susceptibility patterns and investigation of cephalosporin hydrolysing beta-lactamases of Gram-negative extraintestinal clinical isolates. Int J Antimicrob Agents. 2000;16:395–400.CrossRefPubMedGoogle Scholar
  21. 21.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.CrossRefPubMedGoogle Scholar
  22. 22.
    Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88. doi: 10.1097/CCM.0b013e31819323c6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24. doi: 10.1164/ajrccm.149.3.7509706.CrossRefPubMedGoogle Scholar
  24. 24.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81. doi: 10.1111/j.1469-0691.2011.03570.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Ivady B, Szabo D, Damjanova I, Pataki M, Szabo M, Kenesei E. Recurrent outbreaks of Serratia marcescens among neonates and infants at a pediatric department: an outbreak analysis. Infection. 2014;42:891–8. doi: 10.1007/s15010-014-0654-9.CrossRefPubMedGoogle Scholar
  26. 26.
    Dramowski A, Madide A, Bekker A. Neonatal nosocomial bloodstream infections at a referral hospital in a middle-income country: burden, pathogens, antimicrobial resistance and mortality. Paediatr Int Child Health. 2015. doi: 10.1179/2046905515Y.0000000029.Google Scholar
  27. 27.
    Pererz Lopez A, Ladhani SN, Breathnach A, Planche T, Heath PT, Sharland M. Trends in paediatric nosocomial bacteraemia in a London tertiary hospital. Acta Paediatr. 2013;102:1005–9. doi: 10.1111/apa.12347.CrossRefPubMedGoogle Scholar
  28. 28.
    Sarvikivi E, Lyytikainen O, Vaara M, Saxen H. Nosocomial bloodstream infections in children: an 8-year experience at a tertiary-care hospital in Finland. Clin Microbiol Infect. 2008;14:1072–5. doi: 10.1111/j.1469-0691.2008.02079.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Frank M, Gur E, Givon-Lavi N, Peled N, Dagan R, Leibovitz E. Nosocomial bloodstream infections in children and adolescents in southern Israel: a 10-year prospective study (1992–2001). Scand J Infect Dis. 2005;37:177–83. doi: 10.1080/00365540410020956.CrossRefPubMedGoogle Scholar
  30. 30.
    Haeusler GM, Mechinaud F, Daley AJ, Starr M, Shann F, Connell TG, et al. Antibiotic-resistant Gram-negative bacteremia in pediatric oncology patients—risk factors and outcomes. Pediatr Infect Dis J. 2013;32:723–6. doi: 10.1097/INF.0b013e31828aebc8.CrossRefPubMedGoogle Scholar
  31. 31.
    Mikulska M, Viscoli C, Orasch C, Livermore DM, Averbuch D, Cordonnier C, et al. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Infect. 2014;68:321–31. doi: 10.1016/j.jinf.2013.12.006.CrossRefPubMedGoogle Scholar
  32. 32.
    West BA, Peterside O. Sensitivity pattern among bacterial isolates in neonatal septicaemia in port Harcourt. Ann Clin Microbiol Antimicrob. 2012;11:7. doi: 10.1186/1476-0711-11-7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kristof K, Kocsis E, Nagy K. Clinical microbiology of early-onset and late-onset neonatal sepsis, particularly among preterm babies. Acta Microbiol Immunol Hung. 2009;56:21–51. doi: 10.1556/AMicr.56.2009.1.2.CrossRefPubMedGoogle Scholar
  34. 34.
    Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, Fiori B, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother. 2007;51:1987–94. doi: 10.1128/aac.01509-06.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pereira CA, Marra AR, Camargo LF, Pignatari AC, Sukiennik T, Behar PR, et al. Nosocomial bloodstream infections in Brazilian pediatric patients: microbiology, epidemiology, and clinical features. PLoS One. 2013;8:e68144. doi: 10.1371/journal.pone.0068144.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Miedema KG, Winter RH, Ammann RA, Droz S, Spanjaard L, de Bont ES, et al. Bacteria causing bacteremia in pediatric cancer patients presenting with febrile neutropenia–species distribution and susceptibility patterns. Support Care Cancer. 2013;21:2417–26. doi: 10.1007/s00520-013-1797-4.CrossRefPubMedGoogle Scholar
  37. 37.
    Zaoutis TE, Goyal M, Chu JH, Coffin SE, Bell LM, Nachamkin I, et al. Risk factors for and outcomes of bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in children. Pediatrics. 2005;115:942–9. doi: 10.1542/peds.2004-1289.CrossRefPubMedGoogle Scholar
  38. 38.
    Peralta G, Lamelo M, Alvarez-Garcia P, Velasco M, Delgado A, Horcajada JP, et al. Impact of empirical treatment in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. bacteremia. A multicentric cohort study. BMC Infect Dis. 2012;12:245. doi: 10.1186/1471-2334-12-245.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sostarich AM, Zolldann D, Haefner H, Luetticken R, Schulze-Roebecke R, Lemmen SW. Impact of multiresistance of gram-negative bacteria in bloodstream infection on mortality rates and length of stay. Infection. 2008;36:31–5. doi: 10.1007/s15010-007-6316-4.CrossRefPubMedGoogle Scholar
  40. 40.
    Sick AC, Tschudin-Sutter S, Turnbull AE, Weissman SJ, Tamma PD. Empiric combination therapy for gram-negative bacteremia. Pediatrics. 2014;133:e1148–55. doi: 10.1542/peds.2013-3363.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Balázs Ivády
    • 1
    • 2
  • Éva Kenesei
    • 3
  • Péter Tóth-Heyn
    • 4
  • Gabriella Kertész
    • 5
  • Klára Tárkányi
    • 6
  • Csaba Kassa
    • 7
  • Enikő Ujhelyi
    • 8
  • Borbála Mikos
    • 9
  • Erzsébet Sápi
    • 10
  • Krisztina Varga-Heier
    • 11
  • Gábor Guóth
    • 12
  • Dóra Szabó
    • 13
  1. 1.Department of Anesthesiology and Intensive CareHeim Pál Children’s HospitalBudapestHungary
  2. 2.Institute of Medical MicrobiologySemmelweis University of BudapestBudapestHungary
  3. 3.1st Department of Pediatrics, Microbiology LaboratorySemmelweis University of BudapestBudapestHungary
  4. 4.1st Department of PediatricsSemmelweis University of BudapestBudapestHungary
  5. 5.2nd Department of PediatricsSemmelweis University of BudapestBudapestHungary
  6. 6.Bacteriology LaboratoryEgyesített Szent Isván and Szent László HospitalBudapestHungary
  7. 7.Department for Pediatric Haematology and Stem Cell TransplantationEgyesített Szent Isván and Szent László HospitalBudapestHungary
  8. 8.Pediatric Intensive Care UnitEgyesített Szent Isván and Szent László HospitalBudapestHungary
  9. 9.Department of Anesthesiology and Intensive CareBethesda Childrens HospitalBudapestHungary
  10. 10.Center for Pediatric CardiologyGottsegen György Hungarian Institute of CardiologyBudapestHungary
  11. 11.Faculty of MedicineSemmelweis UniversityBudapestHungary
  12. 12.Department of PediatricsSzent György Hospital of County FejérSzekesfehervarHungary
  13. 13.Institute of Medical MicrobiologySemmelweis UniversityBudapestHungary

Personalised recommendations