Skip to main content

Advertisement

Log in

Heel quantitative ultrasound in HIV-infected patients: a cross-sectional study

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

HIV infection has been associated with increased risk of osteoporosis and fragility fractures. Dual-energy X-ray absorptiometry (DXA) is the reference standard to assess bone mineral density (BMD); however, it is not easily accessible in several settings. Heel Quantitative ultrasound (QUS) is a radiation-free, easy-to-perform technique, which may help reducing the need for DXA.

Methods

In this cross-sectional study, we used heel QUS (Hologic Sahara®) to assess bone status in a cohort of HIV-infected patients. A QUS stiffness index (QUI) threshold >83 was used to identify patients with a low likelihood of osteoporosis. Moreover, we compared QUS results with those of 36 sex- and age-matched HIV-negative controls.

Results

244 HIV-positive patients were enrolled. Median heel QUI value was 83 (73–96) vs. 93 (IQR 84–104) in the control group (p = 0.04). 110 patients (45 %) had a QUI value ≤83. Risk factors for low QUI values were age (OR 1.04 per year, 95 % CI 1.01–1.07, p = 0.004), current use of protease inhibitors (OR 1.85, CI 1.03–3.35, p = 0.039), current use of tenofovir (OR 2.28, CI 1.22–4.27, p = 0.009) and the number of risk factors for secondary osteoporosis (OR 1.46, CI 1.09–1.95, p = 0.01). Of note, QUI values were significantly correlated with FRAX score (r = −0.22, p = 0.004). According to EACS guidelines, 45 % of patients had risk factors for osteoporosis which make them eligible for DXA. By using QUS, we may avoid DXA in around half of them.

Conclusions

As HIV-positive patients are living longer, the prevalence of osteoporosis is expected to increase over time. Appropriate screening, prevention and treatment are crucial to preserve bone health in this population. The use of screening techniques, such as heel QUS, may help reducing the need for DXA. Further studies are needed to define the diagnostic accuracy of this promising technique in the setting of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Palella FJ, Baker RK, Moorman AC, et al. HIV Outpatient Study Investigators. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43:27–34.

    Article  CAS  PubMed  Google Scholar 

  2. Scarpino M, Pinzone MR, Di Rosa M, et al. Kidney disease in HIV-infected patients. Eur Rev Med Pharmacol Sci. 2013;17:2660–7.

    CAS  PubMed  Google Scholar 

  3. Castronuovo D, Cacopardo B, Pinzone MR, Moreno S, Nunnari G. Bone disease in the setting of HIV infection. Eur Rev Med Pharmacol Sci. 2013;17:2413–9.

    CAS  PubMed  Google Scholar 

  4. McComsey GA, Tebas P, Shane E, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51:937–46.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mallon PW. Aging with HIV: osteoporosis and fractures. Curr Opin HIV AIDS. 2014;9:428–35.

    Article  PubMed  Google Scholar 

  6. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20:2165–74.

    Article  PubMed  Google Scholar 

  7. Bolland MJ, Grey AB, Horne AM, et al. Bone mineral density remains stable in HAART-treated HIV-infected men over 2 years. Clin Endocrinol (Oxf). 2007;67:270–5.

    Article  CAS  PubMed  Google Scholar 

  8. Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91:2938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. EACS. European AIDS Clinical Society (EACS) Guidelines, Version 7.1, November 2014. Available from: http://www.eacsociety.org/files/guidelines-7.1-english.pdfAccessed 6 Apr 2015.

  10. Hans D, Krieg MA. Quantitative ultrasound for the detection and management of osteoporosis. Salud Publica Mex. 2009;51:S25–37.

    Article  PubMed  Google Scholar 

  11. Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23:143–53.

    Article  CAS  PubMed  Google Scholar 

  12. Krieg MA, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11:163–87.

    Article  PubMed  Google Scholar 

  13. Casado JL, Bañon S, Andrés R, Perez-Elías MJ, Moreno A, Moreno S. Prevalence of causes of secondary osteoporosis and contribution to lower bone mineral density in HIV-infected patients. Osteoporos Int. 2014;25:1071–9.

    Article  CAS  PubMed  Google Scholar 

  14. Pinzone MR, Di Rosa M, Malaguarnera M, et al. Vitamin D deficiency in HIV infection: an underestimated and undertreated epidemic. Eur Rev Med Pharmacol Sci. 2013;17:1218–32.

    CAS  PubMed  Google Scholar 

  15. Pinzone MR, Di Rosa M, Celesia BM, et al. LPS and HIV gp120 modulate monocyte/macrophage CYP27B1 and CYP24A1 expression leading to vitamin D consumption and hypovitaminosis D in HIV-infected individuals. Eur Rev Med Pharmacol Sci. 2013;17:1938–50.

    CAS  PubMed  Google Scholar 

  16. Overton ET, Chan ES, Brown TT, et al. High-Dose Vitamin D and Calcium Attenuates Bone Loss With ART Initiation: Results From ACTG A5280. CROI 2014, Boston, MA. 2014; March 3-6. Abstract 133.

  17. Pinzone MR, Moreno S, Cacopardo B, Nunnari G. Is there enough evidence to use bisphosphonates in HIV-infected patients? A systematic review and meta-analysis. AIDS Rev. 2014;16:213–22.

    PubMed  Google Scholar 

  18. Stellbrink HJ, Orkin C, Arribas JR, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51:963–72.

    Article  PubMed  Google Scholar 

  19. McComsey GA, Kitch D, Daar ES, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224 s, a substudy of ACTG A5202. J Infect Dis. 2011;203:1791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duvivier C, Kolta S, Assoumou L, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with non-nucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009;23:817–24.

    Article  PubMed  Google Scholar 

  21. Kinai E, Nishijima T, Mizushima D, et al. Long-Term Use of Protease Inhibitors Is Associated with Bone Mineral Density Loss. AIDS Res Hum Retroviruses. 2014;30:553–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rasmussen TA, Jensen D, Tolstrup M, et al. Comparison of bone and renal effects in HIV-infected adults switching to abacavir or tenofovir based therapy in a randomized trial. PloS One. 2012;7:e32445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cotter AG, Vrouenraets SME, Brady JJ, et al. Impact of switching from zidovudine to tenofovir disoproxil fumarate on bone mineral density and markers of bone metabolism in virologically suppressed HIV-1 infected patients: a substudy of the PREPARE study. J Clin Endocrinol Metab. 2013;98:1659–66.

    Article  CAS  PubMed  Google Scholar 

  24. Bloch M, Tong W, Hoy J, et al. Switch from tenofovir to raltegravir increases low bone mineral density and decreases markers of bone turnover over 48 weeks. HIV Med. 2014;15:373–80.

    Article  CAS  PubMed  Google Scholar 

  25. Hernlund E, Svedbom A, Ivergard M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16:S3–7.

    Article  PubMed  Google Scholar 

  27. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet. 1996;348:511–4.

    Article  CAS  PubMed  Google Scholar 

  28. Khaw KT, Reeve J, Luben R, et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet. 2004;363:197–202.

    Article  PubMed  Google Scholar 

  29. Chan MY, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Quantitative ultrasound and fracture risk prediction in nonosteoporotic osteoporotic men and women as defined by WHO criteria. Osteoporos Int. 2013;24:1015–22.

    Article  CAS  PubMed  Google Scholar 

  30. Thomsen K, Jepsen DB, Matzen L, Hermann AP, Masud T, Ryg J. Is calcaneal quantitative ultrasound useful as a prescreen stratification tool for osteoporosis. Osteoporos Int. 2015;26:1459–75.

    Article  CAS  PubMed  Google Scholar 

  31. Cournil A, Eymard-Duvernay S, Diouf A, ANRS 1215 Study Group., et al. Reduced quantitative ultrasound bone mineral density in HIV-infected patients on antiretroviral therapy in Senegal. PLoS One. 2012;7:e31726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown TT, Hoy J, Borderi M, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis. 2015;60:1242–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Nunnari.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinzone, M.R., Castronuovo, D., Di Gregorio, A. et al. Heel quantitative ultrasound in HIV-infected patients: a cross-sectional study. Infection 44, 197–203 (2016). https://doi.org/10.1007/s15010-015-0842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-015-0842-2

Keywords

Navigation