Advertisement

Infection

, Volume 43, Issue 4, pp 399–403 | Cite as

Sex differences in immune responses to infectious diseases

  • Julia Fischer
  • Norma Jung
  • Nirmal Robinson
  • Clara LehmannEmail author
Review

Abstract

Purpose

The influence of sex hormones is recognized to account for the susceptibility and distinct outcomes of diverse infectious diseases.

Methods

This review discusses several variables including differences in behavior and exposure to pathogens, genetic, and immunological factors.

Conclusion

Understanding sex-based differences in immunity during different infectious diseases is crucial in order to provide optimal disease management for both sexes.

Keywords

Sex Immunity Infectious diseases 

Notes

Acknowledgements

This review was written in honor of Gerd Fätkenheuer’s 60th birthday. He has been our teacher for over a decade and we would like to thank him for his excellent teaching—both in internal medicine and infectious diseases but also in science and politics. He taught us to systematically look for all the puzzle pieces, to find a plausible diagnosis, to never give up, to take responsibility for our decisions, and to never forget the ultimate goal—the best for the patient. CL and JF are supported by the German Centre for Infection Research (DZIF). NR’s research is supported by funding from Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD; funded by the DFG within the Excellence Initiative by the German federal and state governments) and Deutsche Forschungsgemeinschaft (SFB 670).

Conflict of interest

The authors have no conflicts of interest.

References

  1. 1.
    Garenne M. Demographic evidence of sex differences in vulnerability to infectious diseases. J Infect Dis. 2015;211:331–2.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Klein SL. Sex differences in prophylaxis and therapeutic treatments for viral diseases. Handb Exp Pharmacol. 2012;214:499–522.PubMedCrossRefGoogle Scholar
  3. 3.
    Markle JG, Fish EN. SeXX matters in immunity. Trends Immunol. 2014;35:97–104.PubMedCrossRefGoogle Scholar
  4. 4.
    Amur S, Parekh A, Mummaneni P. Sex differences and genomics in autoimmune diseases. J Autoimmun. 2012;38:J254–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol. 2010;10:594–604.PubMedCrossRefGoogle Scholar
  6. 6.
    Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8:737–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Pinheiro I, Dejager L, Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays. 2011;33:791–802.PubMedCrossRefGoogle Scholar
  8. 8.
    Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, et al. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun. 2013;41:60–71.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Brooks EG, Schmalstieg FC, Wirt DP, Rosenblatt HM, Adkins LT, Lookingbill DP, et al. A novel X-linked combined immunodeficiency disease. J Clin Invest. 1990;86:1623–31.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schmalstieg FC, Goldman AS. Immune consequences of mutations in the human common gamma-chain gene. Mol Genet Metab. 2002;76:163–71.PubMedCrossRefGoogle Scholar
  11. 11.
    van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007;2007:89017.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87:905–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Castles CG, Oesterreich S, Hansen R, Fuqua SA. Auto-regulation of the estrogen receptor promoter. J Steroid Biochem Mol Biol. 1997;62:155–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Shim GJ, Kis LL, Warner M, Gustafsson JA. Autoimmune glomerulonephritis with spontaneous formation of splenic germinal centers in mice lacking the estrogen receptor alpha gene. Proc Natl Acad Sci USA. 2004;101:1720–4.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Shim GJ, Wang L, Andersson S, Nagy N, Kis LL, Zhang Q, et al. Disruption of the estrogen receptor beta gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis. Proc Natl Acad Sci USA. 2003;100:6694–9.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lambert KC, Curran EM, Judy BM, Milligan GN, Lubahn DB, Estes DM. Estrogen receptor alpha (ERalpha) deficiency in macrophages results in increased stimulation of CD4+ T cells while 17beta-estradiol acts through ERalpha to increase IL-4 and GATA-3 expression in CD4+ T cells independent of antigen presentation. J Immunol. 2005;175:5716–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Gourdy P, Araujo LM, Zhu R, Garmy-Susini B, Diem S, Laurell H, et al. Relevance of sexual dimorphism to regulatory T cells: estradiol promotes IFN-gamma production by invariant natural killer T cells. Blood. 2005;105:2415–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Angele MK, Schwacha MG, Ayala A, Chaudry IH. Effect of gender and sex hormones on immune responses following shock. Shock. 2000;14:81–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Sader MA, McGrath KC, Hill MD, Bradstock KF, Jimenez M, Handelsman DJ, et al. Androgen receptor gene expression in leucocytes is hormonally regulated: implications for gender differences in disease pathogenesis. Clin Endocrinol (Oxf). 2005;62:56–63.CrossRefGoogle Scholar
  20. 20.
    Medina KL, Garrett KP, Thompson LF, Rossi MI, Payne KJ, Kincade PW. Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nat Immunol. 2001;2:718–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Desquilbet L, Goujard C, Rouzioux C, Sinet M, Deveau C, Chaix ML, et al. Does transient HAART during primary HIV-1 infection lower the virological set-point? AIDS. 2004;18:2361–9.PubMedGoogle Scholar
  22. 22.
    Moore AL, Kirk O, Johnson AM, Katlama C, Blaxhult A, Dietrich M, et al. Virologic, immunologic, and clinical response to highly active antiretroviral therapy: the gender issue revisited. J Acquir Immune Defic Syndr. 2003;32:452–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Collazos J, Asensi V, Cartón JA. Sex differences in the clinical, immunological and virological parameters of HIV-infected patients treated with HAART. AIDS. 2007;21:835–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Farzadegan H, Hoover DR, Astemborski J, Lyles CM, Margolick JB, Markham RB, et al. Sex differences in HIV-1 viral load and progression to AIDS. Lancet. 1998;352:1510–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Sterling TR. When should highly active antiretroviral therapy be initiated? Hopkins HIV Rep. 2001;13:11.Google Scholar
  26. 26.
    Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med. 2009;15:955–9.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Herbeuval JP, Grivel JC, Boasso A, Hardy AW, Chougnet C, Dolan MJ, et al. CD4+ T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood. 2005;106:3524–31.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Sodora DL, Gettie A, Miller CJ, Marx PA. Vaginal transmission of SIV: assessing infectivity and hormonal influences in macaques inoculated with cell-free and cell-associated viral stocks. AIDS Res Hum Retroviruses. 1998;14:S119–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Grebely J, Page K, Sacks-Davis R, van der Loeff MS, Rice TM, Bruneau J, et al. The effects of female sex, viral genotype, and IL28B genotype on spontaneous clearance of acute hepatitis C virus infection. Hepatology. 2014;59:109–20.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rodríguez-Torres M, Ríos-Bedoya CF, Rodríguez-Orengo J, Fernández-Carbia A, Marxuach-Cuétara AM, López-Torres A, et al. Progression to cirrhosis in Latinos with chronic hepatitis C: differences in Puerto Ricans with and without human immunodeficiency virus coinfection and along gender. J Clin Gastroenterol. 2006;40:358–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Di Martino V, Lebray P, Myers RP, Pannier E, Paradis V, Charlotte F, et al. Progression of liver fibrosis in women infected with hepatitis C: long-term benefit of estrogen exposure. Hepatology. 2004;40:1426–33.PubMedCrossRefGoogle Scholar
  32. 32.
    McClelland EE, Smith JM. Gender specific differences in the immune response to infection. Archivum Immunologiae et Therapiae Experimentalis. 2011;59:203–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pulm Med. 2013;2013:828939.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Guerra-Silveira F, Abad-Franch F. Sex bias in infectious disease epidemiology: patterns and processes. PLoS one. 2013;8:e62390.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Frieden TR, Lerner BH, Rutherford BR. Lessons from the 1800s: tuberculosis control in the new millennium. Lancet. 2000;355:1088–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Clarke WG, Cochrane AL, Miall WE. Results of a chest x-ray survey in the Vale of Glamorgan; a study of an agricultural community. Tubercle. 1956;37:417–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Yamamoto Y, Saito H, Setogawa T, Tomioka H. Sex differences in host resistance to Mycobacterium marinum infection in mice. Infect Immun. 1991;59:4089–96.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Svanberg L. Effects of estrogen deficiency in women castrated when young. Acta Obstet Gynecol Scand Suppl. 1981;106:11–5.PubMedGoogle Scholar
  39. 39.
    Curtis J, Turk JL. Resistance to subcutaneous infection with Mycobacterium lepraemurium is controlled by more than one gene. Infect Immun. 1984;43:925–30.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Demkow U, Filewska M, Michalowska-Mitczuk D, Kus J, Jagodzinski J, Zielonka T, et al. Heterogeneity of antibody response to myobacterial antigens in different clinical manifestations of pulmonary tuberculosis. J Physiol Pharmacol. 2007;58:117–27.PubMedGoogle Scholar
  41. 41.
    Pope V, Larsen SA, Rice RJ, Goforth SN, Parham CE, Fears MB. Flow cytometric analysis of peripheral blood lymphocyte immunophenotypes in persons infected with Treponema pallidum. Clin Diagn Lab Immunol. 1994;1:121–4.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Bernin H, Lotter H. Sex bias in the outcome of human tropical infectious diseases: influence of steroid hormones. J Infect Dis. 2014;209:S107–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11:300–17.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Liesenfeld O, Nguyen TA, Pharke C, Suzuki Y. Importance of gender and sex hormones in regulation of susceptibility of the small intestine to peroral infection with Toxoplasma gondii tissue cysts. J Parasitol. 2001;87:1491–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Karami M, Doudi M, Setorki M. Assessing epidemiology of cutaneous leishmaniasis in Isfahan, Iran. J Vector Borne Dis. 2013;50:30–7.PubMedGoogle Scholar
  47. 47.
    Satoskar A, Alexander J. Sex-determined susceptibility and differential IFN-gamma and TNF-alpha mRNA expression in DBA/2 mice infected with Leishmania mexicana. Immunology. 1995;84:1–4.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Brabin L, Brabin BJ. Parasitic infections in women and their consequences. Adv Parasitol. 1992;31:1–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Degu G, Mengistu G, Jones J. Some factors affecting prevalence of and immune responses to Schistosoma mansoni in schoolchildren in Gorgora, northwest Ethiopia. Ethiop Med J. 2002;40:345–52.PubMedGoogle Scholar
  50. 50.
    Travi BL, Osorio Y, Melby PC, Chandrasekar B, Arteaga L, Saravia NG. Gender is a major determinant of the clinical evolution and immune response in hamsters infected with Leishmania spp. Infect Immun. 2002;70:2288–96.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lezama-Dávila CM, Isaac-Márquez AP, Barbi J, Oghumu S, Satoskar AR. 17Beta-estradiol increases Leishmania mexicana killing in macrophages from DBA/2 mice by enhancing production of nitric oxide but not pro-inflammatory cytokines. Am J Trop Med Hyg. 2007;76:1125–7.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509:282–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Julia Fischer
    • 1
    • 3
    • 4
  • Norma Jung
    • 1
  • Nirmal Robinson
    • 2
    • 3
  • Clara Lehmann
    • 1
    • 4
    Email author
  1. 1.First Department of Internal MedicineUniversity of CologneCologneGermany
  2. 2.Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
  3. 3.CECAD Research CenterCologneGermany
  4. 4.German Center for Infection Research (DZIF)CologneGermany

Personalised recommendations