, Volume 42, Issue 6, pp 951–959 | Cite as

Intestinal barrier dysfunction in HIV infection: pathophysiology, clinical implications and potential therapies

  • S. F. Assimakopoulos
  • D. Dimitropoulou
  • M. Marangos
  • C. A. Gogos



Current pathogenetic aspects on HIV infection highlight the importance of a chronic immune activation ultimately leading to T lymphocyte homeostasis disruption and immune deregulation associated with disease manifestations and progression. It is widely accepted that this continuous immune activation in HIV infection is principally driven by the phenomenon of pathological microbial translocation (MT).


Review of the literature on the role of intestinal barrier dysfunction in HIV infection, with emphasis on the implicated pathophysiological mechanisms, clinical implications and potentially effective therapeutic interventions.


MT in HIV infection is promoted by a multifactorial disruption of all major levels comprising the intestinal barrier defense. Specifically, HIV infection disrupts the integrity of the intestinal biological (quantitative and qualitative alterations of gut microecology, overgrowth of pathogenic bacteria), immune (depletion of CD4(+) T cells, especially Th17 cells, increased CD4+ FoxP3+ Tregs, decreased mucosal macrophages phagocytic capacity, development of intestinal proinflammatory milieu) and mechanical barrier (enterocytes’ apoptosis, disruption of tight junctions). Intestinal barrier dysfunction allows the passage of microbes and immunostimulatory bioproducts from the gut lumen first in the lamina propria and thereafter in the systemic circulation, thus continuously promoting a local and systemic inflammatory response. This chronic immune activation is associated with HIV disease progression, suboptimal response to HAART and development of non-AIDS comorbidities.


We have reached a point where the effective control of HIV viremia by HAART should be combined with emerging pharmacological approaches aiming at the restoration of the intestinal barrier, targeting its diverse levels of structure and function. Elimination of the MT phenomenon would mitigate its effect on immune homeostasis, which might improve the prognosis of the HIV-infected patient in terms of morbidity and mortality.


HIV AIDS Intestinal barrier Intestinal permeability Microbial translocation Bacterial translocation Endotoxemia 


Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, Borghans JA. Immune activation and collateral damage in AIDS pathogenesis. Front Immunol. 2013;4:298.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ipp H, Zemlin AE, Erasmus RT, Glashoff RH. Role of inflammation in HIV-1 disease progression and prognosis. Crit Rev Clin Lab Sci. 2014;51:98–111.PubMedCrossRefGoogle Scholar
  3. 3.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Funderburg N, Luciano AA, Jiang W, Rodriguez B, Sieg SF, Lederman MM. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS ONE. 2008;3:e1915.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Pilakka-Kanthikeel S, Arheart K, Selvaraj A, Swaminathan S, Pahwa S. Immune activation is associated with increased gut microbial translocation in treatment naive HIV infected children in a resource limited setting. J Acquir Immune Defic Syndr. 2014;66:16–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Tincati C, Bellistri GM, Ancona G, Merlini E, d’Arminio Monforte A, Marchetti G. Role of in vitro stimulation with lipopolysaccharide on T-cell activation in HIV-infected antiretroviral-treated patients. Clin Dev Immunol. 2012;2012:935425.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26:2–18.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Assimakopoulos SF, Scopa CD, Vagianos CE. Pathophysiology of increased intestinal permeability in obstructive jaundice. World J Gastroenterol. 2007;13:6458–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: from molecules to diseases. World J Gastrointest Pathophysiol. 2011;2:123–37.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Paiardini M, Frank I, Pandrea I, Apetrei C, Silvestri G. Mucosal immune dysfunction in AIDS pathogenesis. AIDS Rev. 2008;10:36–46.PubMedGoogle Scholar
  11. 11.
    Gori A, Tincati C, Rizzardini G, Torti C, Quirino T, Haarman M, Ben Amor K, Van Schaik J, Vriesema A, Knol J, Marchetti G, Welling G, Clerici M. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol. 2008;46:757–8.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone CA, Hamady M, Knight R, Bushman FD. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog. 2008;4:e20.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ton H, Brandsnes, Dale S, Holtlund J, Skuibina E, Schjonsby H, Johne B. Improved assay for fecal calprotectin. Clin Chim Acta. 2000;292:41–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature. 2005;434:1093–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, Boden D, Racz P, Markowitz M. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med. 2004;200:761–70.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gordon SN, Cervasi B, Odorizzi P, Silverman R, Aberra F, Ginsberg G, Estes JD, Paiardini M, Frank I, Silvestri G. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J Immunol. 2010;185:5169–79.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kim CJ, McKinnon LR, Kovacs C, Kandel G, Huibner S, Chege D, Shahabi K, Benko E, Loutfy M, Ostrowski M, Kaul R. Mucosal Th17 cell function is altered during HIV infection and is an independent predictor of systemic immune activation. J Immunol. 2013;191:2164–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Bixler SL, Mattapallil JJ. Loss and dysregulation of Th17 cells during HIV infection. Clin Dev Immunol. 2013;2013:852418.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Dandekar S, George MD, Baumler AJ. Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS. 2010;5:173–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Kanwar B, Favre D, McCune JM. Th17 and regulatory T cells: implications for AIDS pathogenesis. Curr Opin HIV AIDS. 2010;5:151–7.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Allers K, Fehr M, Conrad K, Epple HJ, Schurmann D, Geelhaar-Karsch A, Schinnerling K, Moos V, Schneider T. Macrophages accumulate in the gut mucosa of untreated HIV-infected patients. J Infect Dis. 2014;209:739–48.PubMedCrossRefGoogle Scholar
  22. 22.
    Epple HJ, Allers K, Troger H, Kuhl A, Erben U, Fromm M, Zeitz M, Loddenkemper C, Schulzke JD, Schneider T. Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial apoptosis, and a mucosal barrier defect. Gastroenterology. 2010;139:1289–300.PubMedCrossRefGoogle Scholar
  23. 23.
    Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, Amasheh M, Loddenkemper C, Fromm M, Zeitz M, Schulzke JD. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut. 2009;58:220–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, Prindiville T, Dandekar S. Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol. 2008;82:538–45.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Du Plessis J, Vanheel H, Janssen CE, Roos L, Slavik T, Stivaktas PI, Nieuwoudt M, van Wyk SG, Vieira W, Pretorius E, Beukes M, Farre R, Tack J, Laleman W, Fevery J, Nevens F, Roskams T, Van der Merwe SW. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol. 2013;58:1125–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Epple HJ, Zeitz M. HIV infection and the intestinal mucosal barrier. Ann N Y Acad Sci. 2012;1258:19–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Sankaran S, Guadalupe M, Reay E, George MD, Flamm J, Prindiville T, Dandekar S. Gut mucosal T cell responses and gene expression correlate with protection against disease in long-term HIV-1-infected nonprogressors. Proc Natl Acad Sci USA. 2005;102:9860–5.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Buccigrossi V, Laudiero G, Nicastro E, Miele E, Esposito F, Guarino A. The HIV-1 transactivator factor (Tat) induces enterocyte apoptosis through a redox-mediated mechanism. PLoS ONE. 2011;6:e29436.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, Arsenault AL, Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6:e1000852.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schmitz H, Rokos K, Florian P, Gitter AH, Fromm M, Scholz P, Ullrich R, Zeitz M, Pauli G, Schulzke JD. Supernatants of HIV-infected immune cells affect the barrier function of human HT-29/B6 intestinal epithelial cells. Aids. 2002;16:983–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Canani RB, Cirillo P, Mallardo G, Buccigrossi V, Secondo A, Annunziato L, Bruzzese E, Albano F, Selvaggi F, Guarino A. Effects of HIV-1 Tat protein on ion secretion and on cell proliferation in human intestinal epithelial cells. Gastroenterology. 2003;124:368–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Clayton F, Kotler DP, Kuwada SK, Morgan T, Stepan C, Kuang J, Le J, Fantini J. Gp120-induced Bob/GPR15 activation: a possible cause of human immunodeficiency virus enteropathy. Am J Pathol. 2001;159:1933–9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Papasavvas E, Pistilli M, Reynolds G, Bucki R, Azzoni L, Chehimi J, Janmey PA, DiNubile MJ, Ondercin J, Kostman JR, Mounzer KC, Montaner LJ. Delayed loss of control of plasma lipopolysaccharide levels after therapy interruption in chronically HIV-1-infected patients. AIDS. 2009;23:369–75.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Vassallo M, Mercie P, Cottalorda J, Ticchioni M, Dellamonica P. The role of lipopolysaccharide as a marker of immune activation in HIV-1 infected patients: a systematic literature review. Virol J. 2012;9:174.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, Pedersen C, Ruxrungtham K, Lewin SR, Emery S, Neaton JD, Brenchley JM, Deeks SG, Sereti I, Douek DC. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203:780–90.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bukh AR, Melchjorsen J, Offersen R, Jensen JM, Toft L, Stovring H, Ostergaard L, Tolstrup M, Sogaard OS. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals. PLoS ONE. 2011;6:e21275.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, Landay A, Martin J, Sinclair E, Asher AI, Deeks SG, Douek DC, Brenchley JM. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199:1177–85.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Hofer U, Schlaepfer E, Baenziger S, Nischang M, Regenass S, Schwendener R, Kempf W, Nadal D, Speck RF. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice. PLoS Pathog. 2010;6:e1000867.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Deeks SG, Kitchen CM, Liu L, Guo H, Gascon R, Narvaez AB, Hunt P, Martin JN, Kahn JO, Levy J, McGrath MS, Hecht FM. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood. 2004;104:942–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Brenchley JM, Douek DC. The mucosal barrier and immune activation in HIV pathogenesis. Curr Opin HIV AIDS. 2008;3:356–61.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1983;309:453–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, Wieder E, Schmidt D, Hoh R, Neese R, Macallan D, Deeks S, McCune JM. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med. 1999;5:83–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Valdez H, Lederman MM. Cytokines and cytokine therapies in HIV infection. AIDS Clin Rev 1997–1998;187–228.Google Scholar
  44. 44.
    Nixon DE, Landay AL. Biomarkers of immune dysfunction in HIV. Curr Opin HIV AIDS. 2010;5:498–503.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg. 1990;125:403–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Senthil M, Brown M, Xu DZ, Lu Q, Feketeova E, Deitch EA. Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J Trauma. 2006;60:958–65 (discussion 65–7).PubMedCrossRefGoogle Scholar
  47. 47.
    Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci. 2010;1207:E103–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med. 2009;60:471–84.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Hunt PW, Brenchley J, Sinclair E, McCune JM, Roland M, Page-Shafer K, Hsue P, Emu B, Krone M, Lampiris H, Douek D, Martin JN, Deeks SG. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis. 2008;197:126–33.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Hsu DC, Sereti I, Ananworanich J. Serious Non-AIDS events: immunopathogenesis and interventional strategies. AIDS Res Ther. 2013;10:29.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Sagnelli C, Uberti-Foppa C, Pasquale G, De Pascalis S, Coppola N, Albarello L, Doglioni C, Lazzarin A, Sagnelli E. Factors influencing liver fibrosis and necroinflammation in HIV/HCV coinfection and HCV monoinfection. Infection. 2013;41:959–67.PubMedCrossRefGoogle Scholar
  52. 52.
    Bica I, McGovern B, Dhar R, Stone D, McGowan K, Scheib R, Snydman DR. Increasing mortality due to end-stage liver disease in patients with human immunodeficiency virus infection. Clin Infect Dis. 2001;32:492–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Graham CS, Baden LR, Yu E, Mrus JM, Carnie J, Heeren T, Koziel MJ. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis. 2001;33:562–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenthal E, Salmon-Ceron D, Lewden C, Bouteloup V, Pialoux G, Bonnet F, Karmochkine M, May T, Francois M, Burty C, Jougla E, Costagliola D, Morlat P, Chene G, Cacoub P. Liver-related deaths in HIV-infected patients between 1995 and 2005 in the French GERMIVIC Joint Study Group Network (Mortavic 2005 study in collaboration with the Mortalite 2005 survey, ANRS EN19). HIV Med. 2009;10:282–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Puoti M, Prestini K, Putzolu V, Zanini B, Baiguera C, Antonini MG, Pagani P, Airoldi M, Carosi G. HIV/HCV co-infection: natural history. J Biol Regul Homeost Agent. 2003;17:144–6.Google Scholar
  56. 56.
    Pedersen KK, Pedersen M, Troseid M, Gaardbo JC, Lund TT, Thomsen C, Gerstoft J, Kvale D, Nielsen SD. Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr. 2013;64:425–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Timmons T, Shen C, Aldrovandi G, Rollie A, Gupta SK, Stein JH, Dube MP. Microbial translocation and metabolic and body composition measures in treated and untreated HIV infection. AIDS Res Hum Retroviruses. 2014;30:272–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Epeldegui M, Widney DP, Martinez-Maza O. Pathogenesis of AIDS lymphoma: role of oncogenic viruses and B cell activation-associated molecular lesions. Curr Opin Oncol. 2006;18:444–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Ehren K, Hertenstein C, Kummerle T, Vehreschild JJ, Fischer J, Gillor D, Wyen C, Lehmann C, Cornely OA, Jung N, Gravemann S, Platten M, Wasmuth JC, Rockstroh JK, Boesecke C, Schwarze-Zander C, Fatkenheuer G. Causes of death in HIV-infected patients from the Cologne–Bonn cohort. Infection. 2014;42:135–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Breen EC, Hussain SK, Magpantay L, Jacobson LP, Detels R, Rabkin CS, Kaslow RA, Variakojis D, Bream JH, Rinaldo CR, Ambinder RF, Martinez-Maza O. B-cell stimulatory cytokines and markers of immune activation are elevated several years prior to the diagnosis of systemic AIDS-associated non-Hodgkin B-cell lymphoma. Cancer Epidemiol Biomarkers Prev. 2011;20:1303–14.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Marks MA, Rabkin CS, Engels EA, Busch E, Kopp W, Rager H, Goedert JJ, Chaturvedi AK. Markers of microbial translocation and risk of AIDS-related lymphoma. AIDS. 2013;27:469–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou L, Saksena NK. HIV associated neurocognitive disorders. Infect Dis Rep. 2013;5:e8.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Genis P, Jett M, Bernton EW, Boyle T, Gelbard HA, Dzenko K, Keane RW, Resnick L, Mizrachi Y, Volsky DJ, et al. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage–astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med. 1992;176:1703–18.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim D, Kim JY. Anti-CD14 antibody reduces LPS responsiveness via TLR4 internalization in human monocytes. Mol Immunol. 2014;57:210–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS ONE. 2008;3:e2516.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Marchetti G, Bellistri GM, Borghi E, Tincati C, Ferramosca S, La Francesca M, Morace G, Gori A, Monforte AD. Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy. AIDS. 2008;22:2035–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol. 2012;5:596–604.PubMedCrossRefGoogle Scholar
  68. 68.
    Cassol E, Malfeld S, Mahasha P, van der Merwe S, Cassol S, Seebregts C, Alfano M, Poli G, Rossouw T. Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis. 2010;202:723–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Sindhu KN, Sowmyanarayanan TV, Paul A, Babji S, Ajjampur SS, Priyadarshini S, Sarkar R, Balasubramanian KA, Wanke CA, Ward HD, Kang G. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2014;58:1107–15.PubMedCrossRefGoogle Scholar
  70. 70.
    Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep. 2013;15:314.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298:G807–19.PubMedCrossRefGoogle Scholar
  72. 72.
    Girardin M, Seidman EG. Indications for the use of probiotics in gastrointestinal diseases. Dig Dis. 2011;29:574–87.PubMedCrossRefGoogle Scholar
  73. 73.
    Irvine SL, Hummelen R, Hekmat S, Looman CW, Habbema JD, Reid G. Probiotic yogurt consumption is associated with an increase of CD4 count among people living with HIV/AIDS. J Clin Gastroenterol. 2010;44:e201–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Sereti I EJ, Thompson W, Fischl M, Croughs T, Beq S, Yao M, Boulassel R, Lederman M, Routy JP (2012) Gut mucosa T lymphocyte restoration in chronically HIV (+) patients treated with recombinant interleukin-7. In: 19th Conf Retroviruses Opportun Infect, Seattle, WA.Google Scholar
  75. 75.
    Sung MK, Park MY. Nutritional modulators of ulcerative colitis: clinical efficacies and mechanistic view. World J Gastroenterol. 2013;19:994–1004.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K, Moseley PL. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol. 1985;2014(116):183–91.Google Scholar
  77. 77.
    Margaritis VG, Filos KS, Michalaki MA, Scopa CD, Spiliopoulou I, Nikolopoulou VN, Vagianos CE. Effect of oral glutamine administration on bacterial translocation, endotoxemia, liver and ileal morphology, and apoptosis in rats with obstructive jaundice. World J Surg. 2005;29:1329–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Leite RD, Lima NL, Leite CA, Farhat CK, Guerrant RL, Lima AA. Improvement of intestinal permeability with alanyl-glutamine in HIV patients: a randomized, double blinded, placebo-controlled clinical trial. Arq Gastroenterol. 2013;50:56–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Scofield VL, Yan M, Kuang X, Kim SJ, Wong PK. The drug monosodium luminol (GVT) preserves crypt-villus epithelial organization and allows survival of intestinal T cells in mice infected with the ts1 retrovirus. Immunol Lett. 2009;122:150–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Bajaj JS, Heuman DM, Sanyal AJ, Hylemon PB, Sterling RK, Stravitz RT, Fuchs M, Ridlon JM, Daita K, Monteith P, Noble NA, White MB, Fisher A, Sikaroodi M, Rangwala H, Gillevet PM. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE. 2013;8:e60042.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Palmer CD, Guinan EC, Levy O. Deficient expression of bactericidal/permeability-increasing protein in immunocompromised hosts: translational potential of replacement therapy. Biochem Soc Trans. 2011;39:994–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. F. Assimakopoulos
    • 1
  • D. Dimitropoulou
    • 1
  • M. Marangos
    • 1
  • C. A. Gogos
    • 1
  1. 1.Department of Internal Medicine, Division of Infectious DiseasesUniversity Hospital of PatrasPatrasGreece

Personalised recommendations