Skip to main content
Log in

Molekulares Design von Nanobodies als Werkzeuge in der Allergologie: Diagnostik und mehr

  • Übersicht
  • Published:
Allergo Journal Aims and scope Submit manuscript

Zusammenfassung

Hintergrund: Molekulare Technologien haben in vielerlei Hinsicht den Weg zu einem besseren Verständnis allergischer Erkrankungen geebnet, angefangen bei rekombinanten Allergenen bis hin zu maßgeschneiderten Werkzeugen für analytische, diagnostische und therapeutische Zwecke. Die Entwicklung solcher Moleküle ist inzwischen ein fester Bestandteil vieler biotechnologischer und biomedizinischer Bereiche. Ein nicht mehr ganz neues Konzept ist das der sogenannten Nanobodies, Einzeldomänen-Antikörper, die ihren primären Ursprung in Kamelen haben. Trotz ihres Potenzials hat der Einzug der Nanobody-Technologien in die Allergologie vergleichsweise lange gedauert.

Methoden: In dieser Übersicht werden der aktuelle Stand und die Machbarkeit der Entwicklung von Nanobody-basierten Werkzeugen für Anwendungen in der Allergologie zusammengefasst.

Ergebnisse: In den letzten Jahren wurden zunehmend Nanobodies mit Spezifität für Allergene entwickelt. Parallel dazu hat ihre molekulare Evolution die Erzeugung von unterschiedlichen Nanobody-Formaten ermöglicht, die gegenüber herkömmlichen Antikörpern deutliche Vorteile bieten. Auf dieser Grundlage wurden unterschiedliche Anwendungsformen von Nanobody-basierten Molekülen etabliert und in Machbarkeitsstudien vorgestellt.

Diskussion: Aktuelle Studien geben einen ersten Einblick in die zukünftigen Einsatzmöglichkeiten von Nanobody-Technologien in einem komplexen System wie dem der allergischen Erkrankungen. Dabei wird deutlich, dass die Einfachheit dieser Ansätze im Vergleich zu herkömmlichen Antikörper-Technologien den Anwendungsbereich in der Allergologie sowohl erweitern als auch vertiefen wird.

Zitierweise: Aagaard JB, Ballegaard A-SR, Andersen PO, Spillner E. Molecular engineering of nanobodies as tools in allergology: diagnostics and beyond. Allergo J Int 2023;32:240-50

https://doi.org/10.1007/s40629-023-00261-w

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Finkelman FD, Boyce JA, Vercelli D, Rothenberg ME. Key advances in mechanisms of asthma, allergy, and immunology in 2009. J Allergy Clin Immunol 2010; 125:312-8

  2. Chang TW. The pharmacological basis of anti-IgE therapy. Nat Biotechnol 2000; 18:157-62

  3. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol 2008; 8:205-17

  4. Clement MJ, Fortune A, Phalipon A, Marcel-Peyre V, Simenel C, Imberty A et al. Toward a better understanding of the basis of the molecular mimicry of polysaccharide antigens by peptides: the example of Shigella flexneri 5a. J Biol Chem 2006; 281:2317-32

  5. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363:446-8

  6. Ward ES, Gussow D, Griffiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989; 341:544-6

  7. Konning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S et al. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 2016; 45:10-6

  8. Platts-Mills TA, Hilger C, Jappe U, van Hage M, Gadermaier G, Spillner E et al. Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy 2021; 76:2383-94

  9. Pons L, Chery C, Romano A, Namour F, Artesani MC, Gueant JL. The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy 2002; 57 Suppl 72:88-93

  10. Blank S, Seismann H, Michel Y, McIntyre M, Cifuentes L, Braren I et al. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy 2011; 66:1322-9

  11. Frick M, Fischer J, Helbling A, Rueff F, Wieczorek D, Ollert M et al. Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. J Allergy Clin Immunol 2016; 138:1663-71 e9

  12. Santos AF, Alpan O, Hoffmann HJ. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy 2021; 76:2420-32

  13. Erdmann SM, Sachs B, Schmidt A, Merk HF, Scheiner O, Moll-Slodowy S et al. In vitro analysis of birch-pollen-associated food allergy by use of recombinant allergens in the basophil activation test. Int Arch Allergy Immunol 2005; 136:230-8

  14. Bahri R, Custovic A, Korosec P, Tsoumani M, Barron M, Wu J et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol 2018; 142:485-96 e16

  15. Eberlein B, Krischan L, Darsow U, Ollert M, Ring J. Double positivity to bee and wasp venom: improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. J Allergy Clin Immunol 2012; 130:155-61

  16. Vos B, Kohler J, Muller S, Stretz E, Rueff F, Jakob T. Spiking venom with rVes v 5 improves sensitivity of IgE detection in patients with allergy to Vespula venom. J Allergy Clin Immunol 2013; 131:1225-7 e1

  17. Vachova M, Panzner P, Kopac P, Bidovec Stojkovic U, Korosec P. Routine clinical utility of honeybee venom allergen components. J Allergy Clin Immunol Pract 2018; 6:2121-3 e1

  18. Prenner C, Mach L, Glossl J, Marz L. The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of alpha 1,3-fucosylation of the asparagine-bound N-acetylglucosamine. Biochem J 1992; 284 ( Pt 2):377-80

  19. Wojtalewicz N, Goseberg S, Kabrodt K, Schellenberg I. Six years of INSTAND e. V. sIgE proficiency testing: An valuation of in vitro allergy diagnostics. Allergo J Int 2017; 26:43-52

  20. Wojtalewicz N, Kabrodt K, Goseberg S, Schellenberg I. Evaluation of the manufacturer-dependent differences in specific immunoglobulin E results for indoor allergens. Ann Allergy Asthma Immunol 2018; 121:490-5

  21. Thorpe SJ, Heath A, Fox B, Patel D, Egner W. The 3rd International Standard for serum IgE: international collaborative study to evaluate a candidate preparation. Clin Chem Lab Med 2014; 52:1283-9

  22. Braren I, Blank S, Seismann H, Deckers S, Ollert M, Grunwald T, Spillner E. Generation of human monoclonal allergen-specific IgE and IgG antibodies from synthetic antibody libraries. Clin Chem 2007; 53:837-44

  23. Offermann N, Plum M, Hubner U, Rathloff K, Braren I, Fooke M, Spillner E. Human serum substitution by artificial sera of scalable allergen reactivity based on polyclonal antibodies and chimeras of human FcgammaRI and IgE domains. Allergy 2016; 71:1794-9

  24. Wood RA, Segall N, Ahlstedt S, Williams PB. Accuracy of IgE antibody laboratory results. Ann Allergy Asthma Immunol 2007; 99:34-41

  25. Smith SA, Chruszcz M, Chapman MD, Pomes A. Human Monoclonal IgE Antibodies-a Major Milestone in Allergy. Curr Allergy Asthma Rep 2023; 23:53-65

  26. Schuurman J, Perdok GJ, Lourens TE, Parren PW, Chapman MD, Aalberse RC. Production of a mouse/human chimeric IgE monoclonal antibody to the house dust mite allergen Der p 2 and its use for the absolute quantification of allergen-specific IgE. J Allergy Clin Immunol 1997; 99:545-50

  27. Furtado PB, McElveen JE, Gough L, Armour KL, Clark MR, Sewell HF, Shakib F. The production and characterisation of a chimaeric human IgE antibody, recognising the major mite allergen Der p 1, and its chimaeric human IgG1 anti-idiotype. Mol Pathol 2002; 55:315-24

  28. Lu CS, Hung AF, Lin CJ, Chen JB, Chen C, Shiung YY et al. Generating allergen-specific human IgEs for immunoassays by employing human epsilon gene knockin mice. Allergy 2015; 70:384-90

  29. Steinberger P, Kraft D, Valenta R. Construction of a combinatorial IgE library from an allergic patient. Isolation and characterization of human IgE Fabs with specificity for the major timothy grass pollen allergen, Phl p 5. J Biol Chem 1996; 271:10967-72

  30. Jakobsen CG, Bodtger U, Kristensen P, Poulsen LK, Roggen EL. Isolation of high-affinity human IgE and IgG antibodies recognising Bet v 1 and Humicola lanuginosa lipase from combinatorial phage libraries. Mol Immunol 2004; 41:941-53

  31. Hecker J, Diethers A, Schulz D, Sabri A, Plum M, Michel Y et al. An IgE epitope of Bet v 1 and fagales PR10 proteins as defined by a human monoclonal IgE. Allergy 2012; 67:1530-7

  32. Hecker J, Diethers A, Etzold S, Seismann H, Michel Y, Plum M et al. Generation and epitope analysis of human monoclonal antibody isotypes with specificity for the Timothy grass major allergen Phl p 5a. Mol Immunol 2011; 48:1236-44

  33. Croote D, Darmanis S, Nadeau KC, Quake SR. High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes. Science 2018; 362:1306-9

  34. Wurth MA, Hadadianpour A, Horvath DJ, Daniel J, Bogdan O, Goleniewska K et al. Human IgE mAbs define variability in commercial Aspergillus extract allergen composition. JCI Insight 2018; 3

  35. Aagaard JB, Sivelle C, Fischer M, Byskov K, Laursen NS, Pfutzner W et al. Nanobody-based human antibody formats act as IgE surrogate in hymenoptera venom allergy. Allergy 2022; 77:2859-62

  36. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82:775-97

  37. Zavrtanik U, Lukan J, Loris R, Lah J, Hadzi S. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies. J Mol Biol 2018; 430:4369-86

  38. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 2006; 103:4586-91

  39. Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins 2018; 86:697-706

  40. Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77:13-22

  41. Muyldermans S. A guide to: generation and design of nanobodies. FEBS J 2021; 288:2084-102

  42. McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 2018; 25:289-96

  43. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A et al. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife 2016; 5

  44. Zimmermann I, Egloff P, Hutter CAJ, Kuhn BT, Brauer P, Newstead S et al. Generation of synthetic nanobodies against delicate proteins. Nat Protoc 2020; 15:1707-41

  45. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228:1315-7

  46. Crameri R, Walter G. Selective enrichment and high-throughput screening of phage surface-displayed cDNA libraries from complex allergenic systems. Comb Chem High Throughput Screen 1999; 2:63-72

  47. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15:553-7

  48. Ryckaert S, Pardon E, Steyaert J, Callewaert N. Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J Biotechnol 2010; 145:93-8

  49. Sivelle C, Sierocki R, Ferreira-Pinto K, Simon S, Maillere B, Nozach H. Fab is the most efficient format to express functional antibodies by yeast surface display. MAbs 2018; 10:720-9

  50. Kang BH, Lax BM, Wittrup KD. Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation. Methods Mol Biol 2022; 2491:29-62

  51. Chen X, Gentili M, Hacohen N, Regev A. A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun 2021; 12:5506

  52. Koide A, Tereshko V, Uysal S, Margalef K, Kossiakoff AA, Koide S. Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope. J Mol Biol 2007; 373:941-53

  53. Yau KY, Dubuc G, Li S, Hirama T, Mackenzie CR, Jermutus L et al. Affinity maturation of a V(H)H by mutational hotspot randomization. J Immunol Methods 2005; 297:213-24

  54. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 2013; 65:1357-69

  55. Conrath KE, Lauwereys M, Wyns L, Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. Journal of Biological Chemistry 2001; 276:7346-50

  56. Djender S, Schneider A, Beugnet A, Crepin R, Desrumeaux KE, Romani C et al. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microbial Cell Factories 2014; 13

  57. Shen ZL, Xiang YF, Vergara S, Chen AP, Xiao ZY, Santiago U et al. A resource of high-quality and versatile nanobodies for drug delivery. Iscience 2021; 24

  58. Ridgway JBB, Presta LG, Carter P. 'Knobs-into-holes' engineering of antibody C(H)3 domains for heavy chain heterodimerization. Protein Engineering 1996; 9:617-21

  59. De Nardis C, Hendriks LJA, Poirier E, Arvinte T, Gros P, Bakker ABH, de Kruif J. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G(1). Journal of Biological Chemistry 2017; 292:14706-17

  60. de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 2020; 172:105645

  61. Akiba H, Tamura H, Kiyoshi M, Yanaka S, Sugase K, Caaveiro JMM, Tsumoto K. Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Sci Rep 2019; 9:15481

  62. Chen F, Ma H, Li Y, Wang H, Samad A, Zhou J et al. Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. J Agric Food Chem 2019; 67:11219-29

  63. Hu Y, Wu S, Wang Y, Lin J, Sun Y, Zhang C et al. Unbiased Immunization Strategy Yielding Specific Nanobodies against Macadamia Allergen of Vicilin-like Protein for Immunoassay Development. J Agric Food Chem 2021; 69:5178-88

  64. Hu Y, Zhang C, Yang F, Lin J, Wang Y, Wu S et al. Selection of Specific Nanobodies against Lupine Allergen Lup an 1 for Immunoassay Development. Foods 2021; 10

  65. Zettl I, Ivanova T, Strobl MR, Weichwald C, Goryainova O, Khan E et al. Isolation of nanobodies with potential to reduce patients IgE binding to Bet v 1 (68/100 characters). Allergy 2021;

  66. Aagaard JB, Fischer M, Lober J, Neumann FB, Allahverdi D, Sivelle C et al. Extract-Shaped Immune Repertoires as Source for Nanobody-Based Human IgE in Grass Pollen Allergy. Mol Biotechnol 2023;

  67. Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S et al. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250

  68. Korosec P, Valenta R, Mittermann I, Celesnik N, Erzen R, Zidarn M, Kosnik M. Low sensitivity of commercially available rApi m 1 for diagnosis of honeybee venom allergy. J Allergy Clin Immunol 2011; 128:671-3

  69. Schrautzer C, Bokanovic D, Hemmer W, Lang R, Hawranek T, Schwarz I et al. Sensitivity and specificity of Hymenoptera allergen components depend on the diagnostic assay employed. J Allergy Clin Immunol 2016; 137:1603-5

  70. Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V et al. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrobial Agents and Chemotherapy 2016; 60:6-13

  71. Khaled AQ, Sana Y, Abdulrahman R, Raida K, Sami AH. Blocking of Histamine Release and IgE Binding to FcepsilonRI on Human Basophils by Antibodies Produced in Camels. Allergy Asthma Immunol Res 2015; 7:583-9

  72. Jabs F, Plum M, Laursen NS, Jensen RK, Molgaard B, Miehe M et al. Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts Fc epsilon RI interaction. Nature Communications 2018; 9

  73. Orengo JM, Radin AR, Kamat V, Badithe A, Ben LH, Bennett BL et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nature Communications 2018; 9

  74. Shamji MH, Singh I, Layhadi JA, Ito C, Karamani A, Kouser L et al. Passive Prophylactic Administration with a Single Dose of Anti-Fel d 1 Monoclonal Antibodies REGN1908-1909 in Cat Allergen-induced Allergic Rhinitis A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am J Respir Crit Care Med 2021;204:23-33

  75. Gevaert P, De Craemer J, De Ruyck N, Rottey S, de Hoon J, Hellings PW et al. Novel antibody cocktail targeting Bet v 1 rapidly and sustainably treats birch allergy symptoms in a phase 1 study. J Allergy Clin Immunol 2022;149:189-99

  76. Zettl I, Ivanova T, Zghaebi M, Rutovskaya MV, Ellinger I, Goryainova O et al. Generation of high affinity ICAM-1-specific nanobodies and evaluation of their suitability for allergy treatment. Front Immunol 2022;13:1022418

Download references

Danksagung

Die Abbildungen 1a, 2 und 3 wurden mit BioRender.com erzeugt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edzard Spillner.

Ethics declarations

J. Baunvig Aagaard, A.-S. Ravn Ballegaard, P. Ommen Andersen und E. Spillner geben an, dass kein Interessenkonflikt besteht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aagaard, J., Ballegaard, AS., Andersen, P. et al. Molekulares Design von Nanobodies als Werkzeuge in der Allergologie: Diagnostik und mehr. Allergo J 32, 29–40 (2023). https://doi.org/10.1007/s15007-023-5829-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15007-023-5829-1

Schlüsselwörter

Navigation