Skip to main content
Log in

Der Farmeffekt revisited: vom β-Lactoglobulin mit Zink im Kuhstallstaub zur Anwendung

  • Übersicht
  • Published:
Allergo Journal Aims and scope Submit manuscript

This article has been updated

Zusammenfassung

Hintergrund: Zahlreiche Faktoren wie Mikrobiota und deren Produkte werden im Zusammenhang mit der Hygienehypothese und dem damit assoziierten allergiepräventiven Farmeffekt diskutiert. Neben dem Einatmen der Stäube auf Bauernhöfen wirkt auch der Konsum von Rohmilch der Entstehung von Asthma und Allergien entgegen. Da besonders Rinderställe und Kuhmilch als wirksam beschrieben wurden, scheint die Beteiligung eines bovinen Proteins wahrscheinlich. β-Lactoglobulin (BLG) ist ein Hauptprotein in Milch und besitzt als Lipocalin eine intramolekulare Tasche, welche eine Bindung an hydrophobe Liganden ermöglicht.

Ergebnisse: Unsere Studien zeigen, dass unbeladenes BLG die Entstehung einer Allergie begünstigt, während beladenes, sogenanntes holo-BLG, allergiepräventiv wirkt. BLG konnte mit Zink assoziiert auch im Stallstaub und in der Umgebungsluft von Rinderfarmen nachgewiesen werden.

Schlussfolgerung: Es scheint daher naheliegend, dass zusätzlich zu Mikroben und deren Produkten auch holo-BLG eine wichtige Rolle im schützenden Farmeffekt spielt. In einer neu entwickelten Lutschtablette zum Diätmanagement bei Allergien ist Zink an holo-BLG daher, basierend auf dem Bauernhof-Effekt, einer der Schlüsselbestandteile.

Zitierweise: Mayerhofer H, Pali-Schöll I. The farm effect revisited: from β-lactoglobulin with zinc in cowshed dust to its application. Allergo J Int 2021; 30:135-40

https://doi.org/10.1007/s40629-021-00174-6

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

© Stall, Hütte: Clker-Free-Vector-Images@Pixabay; Kuh: grafikacesky@Pixabay; Alm, Mutter-Kind, Milch: OpenClipart-Vectors@Pixabay; Hund: Jose R. Cabello@Pixabay

Change history

  • 02 March 2022

    Zitationshinweise im Seitenkopf wurden entfernt, da sie zu Verwirrung bei der Zitationsdatenbank von Clarivate geführt haben.

Literatur

  1. Ege MJ. The Hygiene Hypothesis in the Age of the Microbiome. Ann Am Thorac Soc 2017;14:S348-53

  2. Strachan DP. Family size, infection and atopy: the first decade of the "hygiene hypothesis". Thorax 2000;55 Suppl 1:S2-10

  3. Matricardi PM, Rosmini F, Riondino S, Fortini M, Ferrigno L, Rapicetta M, et al. Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. BMJ 2000;320:412-7

  4. Weber J, Illi S, Nowak D, Schierl R, Holst O, von Mutius E, et al. Asthma and the hygiene hypothesis. Does cleanliness matter? Am J Respir Crit Care Med 2015;191:522-9

  5. Frei R, Ferstl R, Roduit C, Ziegler M, Schiavi E, Barcik W et al; Prevention of Allergy Risk factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study group; Protection Against Allergy Study in Rural Environments (PASTURE)/Mechanisms of Early Protective Exposures on Allergy Development (EFRAIM) study group. Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers' children against airway inflammation and colitis. J Allergy Clin Immunol 2018;141:382-90.e7

  6. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 2015;349:1106-10

  7. Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M, Grize L, et al; Allergy and Endotoxin Study Team. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002;347:869-77

  8. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WOCM, Braun-Fahrländer C, et al; GABRIELA Transregio 22 Study Group. Exposure to environmental microorganisms and childhood asthma. N Engl J Med 2011;364:701-9

  9. Depner M, Taft DH, Kirjavainen PV, Kalanetra KM, Karvonen AM, Peschel S, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med 2020;26:1766-75

  10. Marrs T, Logan K, Craven J, Radulovic S, McLean WHAI, Lack G, et al; EAT Study Team. Dog ownership at three months of age is associated with protection against food allergy. Allergy 2019;74:2212-9

  11. Kettleson EM, Adhikari A, Vesper S, Coombs K, Indugula R, Reponen T. Key determinants of the fungal and bacterial microbiomes in homes. Environ Res 2015;138:130-5

  12. Kirjavainen PV, Karvonen AM, Adams RI, Täubel M, Roponen M, Tuoresmäki P, et al. Author Correction: Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med 2019;25:1319

  13. Ege MJ, Frei R, Bieli C, Schram-Bijkerk D, Waser M, Benz MR, et al; PARSIFAL Study team. Not all farming environments protect against the development of asthma and wheeze in children. J Allergy Clin Immunol 2007;119:1140-7

  14. Borlée F, Yzermans CJ, Krop EJM, Maassen CBM, Schellevis FG, Heederik DJJ, et al. Residential proximity to livestock farms is associated with a lower prevalence of atopy. Occup Environ Med 2018;75:453-60

  15. Müller-Rompa SEK, Markevych I, Hose AJ, Loss G, Wouters IM, Genuneit J, et al; GABRIELA Study Group. An approach to the asthma-protective farm effect by geocoding: Good farms and better farms. Pediatr Allergy Immunol 2018;29:275-82

  16. Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, et al; ALEX Study Team. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004;113:482-8

  17. Peters M, Kauth M, Scherner O, Gehlhar K, Steffen I, Wentker P, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. J Allergy Clin Immunol 2010;126:648-56.e1-4

  18. Perkin MR, Strachan DP. Which aspects of the farming lifestyle explain the inverse association with childhood allergy? J Allergy Clin Immunol 2006;117:1374-81

  19. Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, et al; GABRIELA study group. The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immunol 2011;128:766-73.e4

  20. van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, et al. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020;11:2141

  21. Kirchner B, Pfaffl MW, Dumpler J, von Mutius E, Ege MJ. microRNA in native and processed cow's milk and its implication for the farm milk effect on asthma. J Allergy Clin Immunol 2016;137:1893-5.e13

  22. Brick T, Hettinga K, Kirchner B, Pfaffl MW, Ege MJ. The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. J Allergy Clin Immunol Pract 2020;8:878-89.e3

  23. Bogahawaththa D, Vasiljevic T. Denaturation of selected bioactive whey proteins during pasteurization and their ability to modulate milk immunogenicity. J Dairy Res 2020;87:484-7

  24. Osborn DA, Sinn JKH. Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 2013;3:CD006474; https://doi.org/10.1002/14651858.CD006474.pub3

  25. Brick T, Schober Y, Böcking C, Pekkanen J, Genuneit J, Loss G, et al; PASTURE study group. ω-3 fatty acids contribute to the asthma-protective effect of unprocessed cow's milk. J Allergy Clin Immunol 2016;137:1699-1706.e13

  26. Bieli C, Eder W, Frei R, Braun-Fahrländer C, Klimecki W, Waser M, et al; PARSIFAL study group. A polymorphism in CD14 modifies the effect of farm milk consumption on allergic diseases and CD14 gene expression. J Allergy Clin Immunol 2007;120:1308-15

  27. Waser M, Michels KB, Bieli C, Flöistrup H, Pershagen G, von Mutius E, et al; PARSIFAL Study team. Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clin Exp Allergy 2007;37:661-70

  28. Fiocchi A, Brozek J, Schünemann H, Bahna SL, von Berg A, Beyer K, et al; World Allergy Organization (WAO) Special Committee on Food Allergy. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines. Pediatr Allergy Immunol 2010;21 Suppl 21:1-125

  29. Kontopidis G, Holt C, Sawyer L. Invited review: beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci 2004;87:785-96

  30. Afify SM, Pali-Schöll I, Hufnagl K, Hofstetter G, El-Bassuoni M, Jensen-Jarolim E. Bovine beta-lactoglobulin cross-protects against pollen allergies in an innate manner in BALB/c mice: Potential model for the farm effect. Front Immunol 2021 (in press); https://doi.org/10.3389/fimmu.2021.611474

  31. Hufnagl K, Ghosh D, Wagner S, Fiocchi A, Dahdah L, Bianchini R, et al. Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Sci Rep 2018;8:1598

  32. Roth-Walter F, Afify SM, Pacios LF, Blokhuis BR, Redegeld F, Regner A, et al. Cow's milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J Allergy Clin Immunol 2021;147:321-34.e4

  33. Roth-Walter F, Gomez-Casado C, Pacios LF, Mothes-Luksch N, Roth GA, Singer J, et al. Bet v 1 from birch pollen is a lipocalin-like protein acting as allergen only when devoid of iron by promoting Th2 lymphocytes. J Biol Chem 2014;289:17416-21

  34. Hufnagl K, Afify SM, Braun N, Wagner S, Wallner M, Hauser M, et al. Retinoic acid-loading of the major birch pollen allergen Bet v 1 may improve specific allergen immunotherapy: In silico, in vitro and in vivo data in BALB/c mice. Allergy 2020;75:2073-7

  35. Kehrer JP. Lipocalin-2: pro- or anti-apoptotic? Cell Biol Toxicol 2010;26:83-9

  36. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 1997;45:17-23

  37. Skrypnyk NI, Gist KM, Okamura K, Montford JR, You Z, Yang H, et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury. Kidney Int 2020;97:966-79

  38. Xu WX, Zhang J, Hua YT, Yang SJ, Wang DD, Tang JH. An Integrative Pan-Cancer Analysis Revealing LCN2 as an Oncogenic Immune Protein in Tumor Microenvironment. Front Oncol 2020;10:605097

  39. Roth-Walter F, Schmutz R, Mothes-Luksch N, Lemell P, Zieglmayer P, Zieglmayer R, et al. Clinical efficacy of sublingual immunotherapy is associated with restoration of steady-state serum lipocalin 2 after SLIT: a pilot study. World Allergy Organ J 2018;11:21

  40. Fluckinger M, Merschak P, Hermann M, Haertlé T, Redl B. Lipocalin-interacting-membrane-receptor (LIMR) mediates cellular internalization of beta-lactoglobulin. Biochim Biophys Acta 2008;1778:342-7

  41. Bergmann K-C, Graessel A, Raab J, Banghard W, Krause L, Becker S, et al. Targeted micronutrition via holo-BLG based on the farm effect in house dust mite allergic rhinoconjunctivitis patients - first evaluation in a standardized allergen exposure chamber. Allergo J Int 2021; https://doi.org/10.1007/s40629-021-00163-9

Download references

Funding

Mayerhofer H, Pali-Schöll I. The farm effect revisited: from β-lactoglobulin with zinc in cowshed dust to its application. Allergo J Int 2021; 30:135-40

https://doi.org/10.1007/s40629-021-00174-6

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Pali-Schöll.

Ethics declarations

Die Autorinnen geben an, dass in Bezug auf die vorliegende Veröffentlichung keine Interessenkonflikte bestehen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayerhofer, H., Pali-Schöll, I. Der Farmeffekt revisited: vom β-Lactoglobulin mit Zink im Kuhstallstaub zur Anwendung. Allergo J 30, 44–49 (2021). https://doi.org/10.1007/s15007-021-4820-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15007-021-4820-y

Schlüsselwörter

Navigation