Advertisement

Allergo Journal

, Volume 27, Issue 2, pp 34–45 | Cite as

Subtypisierung der Polyposis nasi: Phänotypen, Endotypen und Komorbiditäten

  • Michael Könnecke
  • Ludger Klimek
  • Joaquim Mullol
  • Philippe Gevaert
  • Barbara Wollenberg
Übersicht
  • 64 Downloads

Zusammenfassung

Hintergrund

Die chronische Rhinosinusitis (CRS) ist eine heterogene und multifaktorielle entzündliche Erkrankung der nasalen und paranasalen Schleimhäute. Bis heute konnte keine international standardisierte, einheitliche Klassifikation hierfür entwickelt werden.

Meist wird eine Phänotyp-Klassifikation nach CRS mit (CRSwNP) und ohne Polyposis (CRSsNP) vorgenommen. Durch eine Vielzahl von Studien konnte aber gezeigt werden, dass auch innerhalb dieser Phänotypen verschiedene Endotypen der CRS existieren, mit unterschiedlichen Pathophysiologien der chronischen Entzündungen der Nasenschleimhaut. In diesem Review sollen die zentralen immunologischen Vorgänge in nasalen Polypen sowie der Einfluss von assoziierten Erkrankungen auf das Entzündungsprofil nasaler Polypen dargestellt werden.

Material/Methoden

Das aktuelle Wissen zu den immunologischen und molekularen Prozessen der CRS, speziell der CRSwNP und der Klassifikation in spezifische Endotypen, wurde mittels einer strukturierten Literaturanalyse durch Recherchen in Medline, Pubmed sowie den nationalen und internationalen Leitlinien-Registern und der Cochrane Library zusammengestellt.

Ergebnisse

Basierend auf der derzeitigen Literatur wurden die verschiedenen immunologischen Prozesse bei CRS und nasalen Polypen herausgearbeitet und eine grafische Darstellung als immunologisches Netzwerk entwickelt. Je nach assoziierten Erkrankungen, wie zum Beispiel Asthma bronchiale, zystische Fibrose (CF) oder „aspirin-exacerbated respiratory disease“ (AERD), können zudem unterschiedliche Entzündungsprofile bei der CRSwNP gefunden werden.

Schlussfolgerung

Die Identifizierung verschiedener Endotypen der CRSwNP kann dazu beitragen, die Diagnostik zu verbessern und dabei helfen, neue individuelle therapeutische Verfahren für die CRSwNP zu entwickeln.

Schlüsselwörter

chronische Rhinosinusitis CRS nasale Polypen CRSwNP Allergie Asthma AERD Entzündung Endotypen 

Abkürzungen

AERD

Aspirin-exacerbated respiratory disease

AFRS

Allergic fungal rhinosinusitis

AIS

Aspirin-Intoleranz-Syndrom

AFS

Allergische Pilzsinusitis

AScA

Asthmatic sinusitis with allergy

ASsA

Asthmatic sinusitis without allergy

BCA

B cell-attracting chemokine

CD

Cluster of differentiation

CF

Zystische Fibrose

CFTR

Cystic fibrosis transmembrane conductance regulator protein

CRS

Chronische Rhinosinusitis

CRSsNP

Chronische Rhinosinusitis ohne nasale Polypen

CRSwNP

Chronische Rhinosinusitis mit nasalen Polypen

CCL

CC-Motiv-Chemokinligand

CCR

CC-Motiv-Chemokinrezeptor

CXCL

CXC-Motiv-Chemokinligand

CXCR

CXC-Motiv-Chemokinrezeptor

ECP

Eosinophiles kationisches Protein

EFRS

Eosinophilic fungal rhinosinusitis

IgA

Immunglobulin A

IgE

Immunglobulin E

IFN

Interferon

IL

Interleukin

ILC

Innate lymphoid cells

MPO

Myeloperoxidase

NAScA

Non-asthmatic sinusitis with allergy

SDF

Stromal cell-derived factor

TFH

Follikuläre T-Helfer-Effektorzellen

Th

T-Helfer

TNF

Tumornekrosefaktor

TNSS

Total nasal symptom score

TSLP

Thymic stromal lymphopoietin

Literatur

  1. 1.
    Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl 2012;23:1–298Google Scholar
  2. 2.
    Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A et al. Chronic rhinosinusitis in Europe — an underestimated disease. A GA2LEN study. Allergy 2011;66:1216–23PubMedCrossRefGoogle Scholar
  3. 3.
    Lanza DC, Kennedy DW. Adult rhinosinusitis defined. Otolaryngol Head Neck Surg 1997;117:S1–7PubMedCrossRefGoogle Scholar
  4. 4.
    Rosenfeld RM. Clinical practice guideline on adult sinusitis. Otolaryngol Head Neck Surg 2007;137:365–77PubMedCrossRefGoogle Scholar
  5. 5.
    Settipane RA, Peters AT, Chiu AG. Chapter 6: Nasal polyps. Am J Rhinol Allergy 2013;27 Suppl 1:S20–5PubMedCrossRefGoogle Scholar
  6. 6.
    Landis BN, Konnerth CG, Hummel T. A study on the frequency of olfactory dysfunction. Laryngoscope 2004;114:1764–9PubMedCrossRefGoogle Scholar
  7. 7.
    Messerklinger W. Background and evolution of endoscopic sinus surgery. Ear Nose Throat J 1994;73:449–50PubMedGoogle Scholar
  8. 8.
    Stammberger H. The evolution of functional endoscopic sinus surgery. Ear Nose Throat J 1994;73:451, 454–5Google Scholar
  9. 9.
    Stuck BA, Bachert C, Federspil P, Hosemann W, Klimek L, Mosges R et al. [Rhinosinusitis guidelines of the German Society for Otorhinolaryngology, Head and Neck Surgery]. HNO 2007;55:758–60, 762–4, 766–77PubMedCrossRefGoogle Scholar
  10. 10.
    Hellquist HB. Nasal polyps update. Histopathology. Allergy Asthma Proc 1996;17:237–42PubMedCrossRefGoogle Scholar
  11. 11.
    Davidsson A, Hellquist HB. The so-called ‚allergic‘ nasal polyp. ORL J Otorhinolaryngol Relat Spec 1993;55:30–5PubMedCrossRefGoogle Scholar
  12. 12.
    Couto LG, Fernades AM, Brandão DF, Santi Neto Dd, Valera FC, Anselmo-Lima WT. Histological aspects of rhinosinusal polyps. Braz J Otorhinolaryngol 2008;74:207–12PubMedCrossRefGoogle Scholar
  13. 13.
    Calus L, Van Zele T, Derycke L, Krysko O, Dutre T, Tomassen P et al. Local inflammation in chronic upper airway disease. Curr Pharm Des 2012;18:2336–46PubMedCrossRefGoogle Scholar
  14. 14.
    Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther 2009;11:257PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zygmunt B, Veldhoen M. T helper cell differentiation more than just cytokines. Adv Immunol 2011;109:159–96PubMedCrossRefGoogle Scholar
  16. 16.
    Plager DA, Kahl JC, Asmann YW, Nilson AE, Pallanch JF, Friedman O et al. Gene transcription changes in asthmatic chronic rhinosinusitis with nasal polyps and comparison to those in atopic dermatitis. PLoS One 2010;5:e11450PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006;61:1280–9PubMedCrossRefGoogle Scholar
  18. 18.
    Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 1993;362:245–8PubMedCrossRefGoogle Scholar
  19. 19.
    Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998;9:745–55PubMedCrossRefGoogle Scholar
  20. 20.
    Derycke L, Eyerich S, Van Crombruggen K, Pérez-Novo C, Holtappels G, Deruyck N et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS One 2014;9:e97581PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Danielsen A, Tynning T, Brokstad KA, Olofsson J, Davidsson A. Interleukin 5, IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum. Eur Arch Otorhinolaryngol 2006;263:282–9PubMedCrossRefGoogle Scholar
  22. 22.
    Li Z, Zhang Y, Sun B. Current understanding of Th2 cell differentiation and function. Protein Cell 2011;2:604–11PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Prussin C, Yin Y, Upadhyaya B. T(H)2 heterogeneity: Does function follow form? J Allergy Clin Immunol 2010;126:1094–8PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bachert C, Wagenmann M, Hauser U, Rudack C. IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 1997;99:837–42PubMedCrossRefGoogle Scholar
  25. 25.
    Bachert C, Gevaert P, Holtappels G, Cuvelier C, van Cauwenberge P. Nasal polyposis: from cytokines to growth. Am J Rhinol 2000;14:279–90PubMedCrossRefGoogle Scholar
  26. 26.
    Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001;14:705–14PubMedCrossRefGoogle Scholar
  27. 27.
    Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 2005;175:3463–8PubMedCrossRefGoogle Scholar
  28. 28.
    Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003;24:25–9PubMedCrossRefGoogle Scholar
  29. 29.
    Peters AT, Kato A, Zhang N, Conley DB, Suh L, Tancowny B et al. Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2010;125:397–403.e10PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 2016;137:1449–56.e4PubMedCrossRefGoogle Scholar
  31. 31.
    Keswani A, Chustz RT, Suh L, Carter R, Peters AT, Tan BK et al. Differential expression of interleukin-32 in chronic rhinosinusitis with and without nasal polyps. Allergy 2012;67:25–32PubMedCrossRefGoogle Scholar
  32. 32.
    Cho JS, Kim JA, Park JH, Park IH, Han IH, Lee HM. Toll-like receptor 4-mediated expression of interleukin-32 via the c-Jun N-terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2016;6:1020–8PubMedCrossRefGoogle Scholar
  33. 33.
    Bai X, Kim SH, Azam T, McGibney MT, Huang H, Dinarello CA et al. IL-32 is a host protective cytokine against Mycobacterium tuberculosis in differentiated THP-1 human macrophages. J Immunol 2010;184:3830–40PubMedCrossRefGoogle Scholar
  34. 34.
    Dinarello CA, Kim SH. IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 2006;65 Suppl 3:iii61–4PubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 2005;22:131–42PubMedGoogle Scholar
  36. 36.
    Li W, Sun W, Liu L, Yang F, Li Y, Chen Y et al. IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. J Immunol 2010;185:5056–65PubMedCrossRefGoogle Scholar
  37. 37.
    Netea MG, Azam T, Lewis EC, Joosten LA, Wang M, Langenberg D et al. Mycobacterium tuberculosis induces interleukin-32 production through a caspase- 1/IL-18/interferon-gamma-dependent mechanism. PLoS Med 2006;3:e277PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nold MF, Nold-Petry CA, Pott GB, Zepp JA, Saavedra MT, Kim SH et al. Endogenous IL-32 controls cytokine and HIV-1 production. J Immunol 2008;181:557–65PubMedCrossRefGoogle Scholar
  39. 39.
    Calabrese F, Baraldo S, Bazzan E, Lunardi F, Rea F, Maestrelli P et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;178:894–901PubMedCrossRefGoogle Scholar
  40. 40.
    Meyer N, Zimmermann M, Bürgler S, Bassin C, Woehrl S, Moritz K et al. IL-32 is expressed by human primary keratinocytes and modulates keratinocyte apoptosis in atopic dermatitis. J Allergy Clin Immunol 2010;125:858–65.e10PubMedCrossRefGoogle Scholar
  41. 41.
    Kang JW, Park YS, Lee DH, Kim MS, Bak Y, Ham SY et al. Interaction network mapping among IL-32 isoforms. Biochimie 2014;101:248–51PubMedCrossRefGoogle Scholar
  42. 42.
    Chin D, Harvey RJ. Nasal polyposis: an inflammatory condition requiring effective anti-inflammatory treatment. Curr Opin Otolaryngol Head Neck Surg 2013;21:23–30PubMedCrossRefGoogle Scholar
  43. 43.
    Lam EP, Kariyawasam HH, Rana BM, Durham SR, McKenzie AN, Powell N et al. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. J Allergy Clin Immunol 2016;137:1514–24PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kato A. Immunopathology of chronic rhinosinusitis. Allergol Int 2015;64:121–30PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007;204:1837–47PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shin HW, Kim DK, Park MH, Eun KM, Lee M, So D et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2015;135:1476–85.e7PubMedCrossRefGoogle Scholar
  47. 47.
    Kimura S, Pawankar R, Mori S, Nonaka M, Masuno S, Yagi T et al. Increased expression and role of thymic stromal lymphopoietin in nasal polyposis. Allergy Asthma Immunol Res 2011;3:186–93PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu T, Li TL, Zhao F, Xie C, Liu AM, Chen X et al. Role of thymic stromal lymphopoietin in the pathogenesis of nasal polyposis. Am J Med Sci 2011;341:40–7PubMedCrossRefGoogle Scholar
  49. 49.
    Nagarkar DR, Poposki JA, Tan BK, Comeau MR, Peters AT, Hulse KE et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2013;132:593–600.e12PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Nagarkar DR, Poposki JA, Comeau MR, Biyasheva A, Avila PC, Schleimer RP et al. Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J Allergy Clin Immunol 2012;130:225–32.e4PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Reh DD, Wang Y, Ramanathan M, Jr., Lane AP. Treatment-recalcitrant chronic rhinosinusitis with polyps is associated with altered epithelial cell expression of interleukin-33. Am J Rhinol Allergy 2010;24:105–9PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kim DK, Jin HR, Eun KM, Mo JH, Cho SH, Oh S et al. The role of interleukin-33 in chronic rhinosinusitis. Thorax 2017;72:635–45PubMedCrossRefGoogle Scholar
  53. 53.
    Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 2008;223:20–38PubMedCrossRefGoogle Scholar
  54. 54.
    Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 2008;121:1484–90PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Castano R, Bosse Y, Endam LM, Desrosiers M. Evidence of association of interleukin-1 receptor-like 1 gene polymorphisms with chronic rhinosinusitis. Am J Rhinol Allergy 2009;23:377–84PubMedCrossRefGoogle Scholar
  56. 56.
    Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011;12:1055–62PubMedCrossRefGoogle Scholar
  57. 57.
    Robinette ML, Colonna M. Immune modules shared by innate lymphoid cells and T cells. J Allergy Clin Immunol 2016;138:1243–51PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 2012;129:216–27.e1–6CrossRefGoogle Scholar
  59. 59.
    Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 2016;138:1253–64PubMedCrossRefGoogle Scholar
  60. 60.
    Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W et al. Cellular comparison of sinus mucosa vs polyp tissue from a single sinus cavity in chronic rhinosinusitis. Int Forum Allergy Rhinol 2015;5:14–27PubMedCrossRefGoogle Scholar
  61. 61.
    Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W et al. Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy 2015;45:394–403PubMedCrossRefGoogle Scholar
  62. 62.
    Beck LA, Stellato C, Beall LD, Schall TJ, Leopold D, Bickel CA et al. Detection of the chemokine RANTES and endothelial adhesion molecules in nasal polyps. J Allergy Clin Immunol 1996;98:766–80PubMedCrossRefGoogle Scholar
  63. 63.
    Davidsson A, Danielsen A, Viale G, Olofsson J, Dell’Orto P et al. Positive identification in situ of mRNA expression of IL-6, and IL-12, and the chemotactic cytokine RANTES in patients with chronic sinusitis and polypoid disease. Clinical relevance and relation to allergy. Acta Otolaryngol 1996;116:604–10PubMedCrossRefGoogle Scholar
  64. 64.
    Allen JS, Eisma R, LaFreniere D, Leonard G, Kreutzer D. Characterization of the eosinophil chemokine RANTES in nasal polyps. Ann Otol Rhinol Laryngol 1998;107:416–20PubMedCrossRefGoogle Scholar
  65. 65.
    Meyer JE, Bartels J, Görögh T, Sticherling M, Rudack C, Ross DA et al. The role of RANTES in nasal polyposis. Am J Rhinol 2005;19:15–20PubMedGoogle Scholar
  66. 66.
    Chen YS, Arab SF, Westhofen M, Lorenzen J. Expression of interleukin-5, interleukin-8, and interleukin-10 mRNA in the osteomeatal complex in nasal polyposis. Am J Rhinol 2005;19:117–23PubMedGoogle Scholar
  67. 67.
    Kostamo K, Sorsa T, Leino M, Tervahartiala T, Alenius H, Richardson M et al. In vivo relationship between collagenase-2 and interleukin-8 but not tumour necrosis factor-alpha in chronic rhinosinusitis with nasal polyposis. Allergy 2005;60:1275–9PubMedCrossRefGoogle Scholar
  68. 68.
    Scavuzzo MC, Fattori B, Ruffoli R, Rocchi V, Carpi A, Berni R et al. Inflammatory mediators and eosinophilia in atopic and non-atopic patients with nasal polyposis. Biomed Pharmacother 2005;59:323–9PubMedCrossRefGoogle Scholar
  69. 69.
    Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 2016;138:1344–53PubMedCrossRefGoogle Scholar
  70. 70.
    Poposki JA, Uzzaman A, Nagarkar DR, Chustz RT, Peters AT, Suh LA et al. Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2011;128:73–81.e4PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bachert C, Van Cauwenberge PB. Inflammatory mechanisms in chronic sinusitis. Acta Otorhinolaryngol Belg 1997;51:209–17PubMedGoogle Scholar
  72. 72.
    Fundová P, Funda DP, Kováø D, Holý R, Navara M, Tlaskalová-Hogenová H. Increased expression of chemokine receptors CCR1 and CCR3 in nasal polyps: molecular basis for recruitment of the granulocyte infiltrate. Folia Microbiol (Praha) 2013;58:219–24CrossRefGoogle Scholar
  73. 73.
    Patel VP, Kreider BL, Li Y, Li H, Leung K, Salcedo T et al. Molecular and functional characterization of two novel human C-C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med 1997;185: 1163–72PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Novak H, Müller A, Harrer N, Günther C, Carballido JM, Woisetschläger M. CCL23 expression is induced by IL-4 in a STAT6-dependent fashion. J Immunol 2007;178:4335–41PubMedCrossRefGoogle Scholar
  75. 75.
    Peterson S, Poposki JA, Nagarkar DR, Chustz RT, Peters AT, Suh LA et al. Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2012;129:119–27.e1–9PubMedCrossRefGoogle Scholar
  76. 76.
    Islam SA, Ling MF, Leung J, Shreffler WG, Luster AD. Identification of human CCR8 as a CCL18 receptor. J Exp Med 2013;210:1889–98PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kato A, Peters A, Suh L, Carter R, Harris KE, Chandra R et al. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2008;121:1385–92, 1392.e1–2PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Polzehl D, Moeller P, Riechelmann H, Perner S. Distinct features of chronic rhinosinusitis with and without nasal polyps. Allergy 2006;61:1275–9PubMedCrossRefGoogle Scholar
  79. 79.
    Patadia M, Dixon J, Conley D, Chandra R, Peters A, Suh LA et al. Evaluation of the presence of B-cell attractant chemokines in chronic rhinosinusitis. Am J Rhinol Allergy 2010;24:11–6PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hadfield PJ, Rowe-Jones JM, Mackay IS. The prevalence of nasal polyps in adults with cystic fibrosis. Clin Otolaryngol Allied Sci 2000;25:19–22PubMedCrossRefGoogle Scholar
  81. 81.
    Derycke L, Zhang N, Holtappels G, Dutré T, Bachert C. IL-17A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosis. J Cyst Fibros 2012;11:193–200PubMedCrossRefGoogle Scholar
  82. 82.
    Waite JC, Skokos D. Th17 response and inflammatory autoimmune diseases. Int J Inflam 2012;2012:819467PubMedGoogle Scholar
  83. 83.
    Chaaban MR, Kejner A, Rowe SM, Woodworth BA. Cystic fibrosis chronic rhinosinusitis: a comprehensive review. Am J Rhinol Allergy 2013;27:387–95PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wentzel JL, Virella-Lowell I, Schlosser RJ, Soler ZM. Quantitative sinonasal symptom assessment in an unselected pediatric population with cystic fibrosis. Am J Rhinol Allergy 2015;29:357–61PubMedCrossRefGoogle Scholar
  85. 85.
    Steinke JW, Liu L, Huyett P, Negri J, Payne SC, Borish L. Prominent role of IFN-γ in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2013;132:856–65.e1–3PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kirsche H, Klimek L. [ASA-intolerance syndrome and persistent rhinosinusitis: Differential diagnosis and treatment]. HNO 2015;63:357–63PubMedCrossRefGoogle Scholar
  87. 87.
    Kowalski ML, Makowska JS, Blanca M, Bavbek S, Bochenek G, Bousquet J et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) — classification, diagnosis and management: review of the EAACI/ENDA(#) and GA2LEN/HANNA*. Allergy 2011;66:818–29PubMedCrossRefGoogle Scholar
  88. 88.
    Nizankowska-Mogilnicka E, Bochenek G, Mastalerz L, Swierczynska M, Picado C, Scadding G et al. EAACI/GA2LEN guideline: aspirin provocation tests for diagnosis of aspirin hypersensitivity. Allergy 2007;62:1111–8PubMedCrossRefGoogle Scholar
  89. 89.
    Dollner R, Hörmann K, Stuck BA, Pfaar O, Klimek L. In-vitro-Diagnostik des ASS-Intoleranz-Syndroms (Aspirin-exacerbated Respiratory Disease: AERD). Allergologie 2014;37:11–19CrossRefGoogle Scholar
  90. 90.
    Szczeklik A, Sanak M. The broken balance in aspirin hypersensitivity. Eur J Pharmacol 2006;533:145–55PubMedCrossRefGoogle Scholar
  91. 91.
    Kramer MF, Ostertag P, Pfrogner E, Rasp G. Nasal interleukin-5, immunoglobulin E, eosinophilic cationic protein, and soluble intercellular adhesion molecule-1 in chronic sinusitis, allergic rhinitis, and nasal polyposis. Laryngoscope 2000;110:1056–62PubMedCrossRefGoogle Scholar
  92. 92.
    Perić A, Vojvodić D, Vukomanović-Durdevid B. Influence of allergy on clinical, immunological and histological characteristics of nasal polyposis. B-ENT 2012;8:25–32PubMedGoogle Scholar
  93. 93.
    Baraniuk JN. Pathogenesis of allergic rhinitis. J Allergy Clin Immunol 1997;99:S763–72PubMedCrossRefGoogle Scholar
  94. 94.
    Scadding G. Cytokine profiles in allergic rhinitis. Curr Allergy Asthma Rep 2014;14:435PubMedCrossRefGoogle Scholar
  95. 95.
    Shin SH, Ye MK, Kim YH, Kim JK. Role of TLRs in the production of chemical mediators in nasal polyp fibroblasts by fungi. Auris Nasus Larynx 2016;43:166–70PubMedCrossRefGoogle Scholar
  96. 96.
    Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci 1997;2:d12–26PubMedCrossRefGoogle Scholar
  97. 97.
    Nayan S, Alizadehfar R, Desrosiers M. Humoral Primary Immunodeficiencies in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2015;15:46PubMedCrossRefGoogle Scholar
  98. 98.
    Ocampo CJ, Peters AT. Antibody deficiency in chronic rhinosinusitis: epidemiology and burden of illness. Am J Rhinol Allergy 2013;27:34–8PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Schwitzguébel AJ, Jandus P, Lacroix JS, Seebach JD, Harr T. Immunoglobulin deficiency in patients with chronic rhinosinusitis: Systematic review of the literature and meta-analysis. J Allergy Clin Immunol 2015;136:1523–31PubMedCrossRefGoogle Scholar
  100. 100.
    Stevens WW, Lee RJ, Schleimer RP, Cohen NA. Chronic rhinosinusitis pathogenesis. J Allergy Clin Immunol 2015;136:1442–53PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bakhshaee M, Fereidouni M, Mohajer MN, Majidi MR, Azad FJ, Moghiman T. The prevalence of allergic fungal rhinosinusitis in sinonasal polyposis. Eur Arch Otorhinolaryngol 2013;270:3095–8PubMedCrossRefGoogle Scholar
  102. 102.
    Telmesani LM. Prevalence of allergic fungal sinusitis among patients with nasal polyps. Ann Saudi Med 2009;29:212–4PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Han JK. Subclassification of chronic rhinosinusitis. Laryngoscope 2013;123 Suppl 2:S15–27CrossRefGoogle Scholar
  104. 104.
    Nakamaru Y, Takagi D, Suzuki M, Homma A, Morita S, Homma A et al. Otologic and Rhinologic Manifestations of Eosinophilic Granulomatosis with Polyangiitis. Audiol Neurootol 2016;21:45–53PubMedCrossRefGoogle Scholar
  105. 105.
    Perić A, Vojvodić D, Perić AV, Radulović V, Miljanović O. Correlation between cytokine levels in nasal fluid and scored clinical parameters in patients with nasal polyposis. Indian J Otolaryngol Head Neck Surg 2013;65(Suppl 2):295–300PubMedCrossRefGoogle Scholar
  106. 106.
    Nabavi M, Arshi S, Bahrami A, Aryan Z, Bemanian MH, Esmaeilzadeh H et al. Increased level of interleukin-13, but not interleukin-4 and interferon-γ in chronic rhinosinusitis with nasal polyps. Allergol Immunopathol (Madrid) 2014;42:465–71CrossRefGoogle Scholar
  107. 107.
    Bachert C, Zhang N. Chronic rhinosinusitis and asthma: novel understanding of the role of IgE ‚above atopy‘. J Intern Med 2012;272:133–43PubMedCrossRefGoogle Scholar
  108. 108.
    Dennis SK, Lam K, Luong A. A Review of Classification Schemes for Chronic Rhinosinusitis with Nasal Polyposis Endotypes. Laryngoscope Investig Otolaryngol 2016;1:130–4PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bachert C, Gevaert P, Hellings P. Biotherapeutics in Chronic Rhinosinusitis with and without Nasal Polyps. J Allergy Clin Immunol Pract 2017; doi: 10.1016/j.jaip.2017.04.024CrossRefPubMedGoogle Scholar
  110. 110.
    Kim DW, Cho SH. Emerging Endotypes of Chronic Rhinosinusitis and Its Application to Precision Medicine. Allergy Asthma Immunol Res 2017;9:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    De Greve G, Hellings PW, Fokkens WJ, Pugin B, Steelant B, Seys SF. Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy 2017;7:22PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Michael Könnecke
    • 1
  • Ludger Klimek
    • 2
  • Joaquim Mullol
    • 3
  • Philippe Gevaert
    • 4
  • Barbara Wollenberg
    • 1
  1. 1.Klinik für Hals-, Nasen- und OhrenheilkundeUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland
  2. 2.Zentrum für Rhinologie und AllergologieWiesbadenDeutschland
  3. 3.Rhinology Unit and Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic, IDIBAPSUniversitat de Barcelona, CIBERESBarcelonaSpanien
  4. 4.Klinik für Hals-, Nasen- und OhrenheilkundeUniversität GentGentBelgien

Personalised recommendations