Skip to main content
Log in

Birch, grass, and mugwort pollen concentrations and intradiurnal patterns at two different urban sites in Berlin, Germany

  • Original
  • Published:
Allergo Journal Aims and scope Submit manuscript



The study investigated the seasonal courses and intradiurnal patterns of birch (Betula), grass (Poaceae), and mugwort (Artemisia) pollen at two sites in the city of Berlin in 2014 and 2015.


The “Motorway Site” was situated at a busy city motorway and the “City Center Site” on the roof of a large hospital. Sampling was undertaken with 7 day recording volumetric spore traps. Light microscopic analysis led to daily means (pollen/m3 air) and 2 h means (daily %). Correlation coefficients were calculated to compare pollen season between the sites. Rainless days were examined for their intradiurnal maximum of pollen concentration and corresponding wind direction in order to identify the impact of local pollen sources. Birch trees, grassed areas, and mugwort/field sagewort stems were mapped at both sites.


The seasonal courses of Betula, Poaceae, and Artemisia pollen each showed significantly positive correlations between the sites, but absolute counts were higher at the motorway. Artemisia pollen showed a distinct morning profile at both sites. Poaceae pollen concentrated on the second half of the day peaking in the evening or at night. Betula pollen offered no clear trend, but the main period mostly started at 8 am and lasted until the end of day.


Higher pollen counts at the motorway seem to be associated with the local vegetation that was much more abundant than at the city center. Local sources of weeds (Artemisia) and grasses (Poaceae) releasing pollen at low heights appear to be more contributing for local pollen load than trees (Betula) at these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, et al. GA2LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 2009;64:1507–15

    Article  CAS  PubMed  Google Scholar 

  2. Maurer M, Zuberbier T. Undertreatment of rhinitis symptoms in Europe: findings from a cross-sectional questionnaire survey. Allergy. 2007;62:1057–63

    Article  CAS  PubMed  Google Scholar 

  3. Zuberbier T, Lötvall J, Simoens S, Subramanian SV, Church MK. Economic burden of inadequate management of allergic diseases in the European Union: a GA2LEN review. Allergy. 2014;69:1275–9

    Article  CAS  PubMed  Google Scholar 

  4. Skjøth CA, Ørby PV, Becker T, Geels C, Schlünssen V, Sigsgaard T, et al. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences. 2013; doi:10.5194/bg-10-541-2013

    Google Scholar 

  5. Bergmann KC, Zuberbier T, Augustin J, Mücke HG, Straff W. Climate change and pollen allergy: cities and municipalities should take people suffering from pollen allergy into account when planting in public spaces. Allergo J. 2012;21:103–7

    Article  Google Scholar 

  6. Cariñanos P, Sánchez-Mesa JA, Prieto-Baena JC, Lopez A, Guerra F, Moreno C, et al. Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. J Environ Monit. 2002; doi:10.1039/b205595c.

    Google Scholar 

  7. Gonzalo-Garijo MA, Tormo-Molina R, Muñoz-Rodríguez AF, Silva-Palacios I. Differences in the spatial distribution of airborne pollen concentrations at different urban locations within a city. J Investig Allergol Clin Immunol 2006;16:37–43

    Google Scholar 

  8. Werchan B, Werchan M, Mücke HG, Gauger U, Simoleit A, Zuberbier T, et al. Spatial distribution of allergenic pollen through a large metropolitan area. Environmental Monitoring and Assessment submitted

  9. Spieksma FTh M, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, et al. Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia (Bologna). 2003;19:171–84

    Article  Google Scholar 

  10. Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, et al. Changes to airborne pollen counts across Europe. PLOS ONE. 2012; doi:10.1371/journal.pone.0034076.PubMedPubMedCentralGoogle Scholar

    Google Scholar 

  11. Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG. Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol. 2003;111:290–5

    Article  PubMed  Google Scholar 

  12. Behrendt H, Becker WM, Fritzsche C, Sliwa-Tomczok W, Tomczok J, Friedrichs KH, et al. Air pollution and allergy: experimental studies on modulation of allergen release from pollen by air pollutants. Int Arch Allergy Immunol. 1997;113:69–74

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez-Mesa JA, Serrano P, Cariñanos P, Prieto-Baena JC, Moreno C, Guerra F, et al. Pollen allergy in Córdoba city: frequency of sensitization and relation with antihistamine sales. J Invest Allergol Clin Immunol. 2005;15:50–6

    Google Scholar 

  14. Cakmak S, Dales RE, Coates F. Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol. 2012;129:228–31

    Article  CAS  PubMed  Google Scholar 

  15. D’Amato G, Bergmann KC, Cecchi L, Annesi-Maesano I, Sanduzzi A, Liccardi G, et al. Climate change and air pollution. Effects on pollen allergy and other allergic respiratory diseases. Allergo J Int. 2014;23:17–23

    PubMed  Google Scholar 

  16. Bergmann KC, Simoleit A, Wagener S, Mücke HG, Werchan M, Zuberbier T. The distribution of pollen and particulate matter in an urban agglomeration using the city of Berlin as an example. Allergo J. 2013;22:471–5

    Article  Google Scholar 

  17. Statistical Office for Berlin-Brandenburg. 2015. Accessed 12. May 2016.

  18. Hirst JM. An automatic volumetric spore trap. Ann Appl Biol. 1952;39:257–65

    Article  Google Scholar 

  19. Senate Department for Urban Development and the Environment. 2014.}. Accessed 12. May 2016

  20. Simoleit A, Gauger U, Mücke HG, Werchan M, Obstová B, Zuberbier T, et al. Intradiurnal patterns of allergenic airborne pollen near a city motorway in Berlin, Germany. Aerobiologia (Bologna). 2015; doi:10.1007/s10453-015-9390-6.

    Google Scholar 

  21. Hecht R. Pollenbestimmungstechnik, Ergebniswertung und die Herausgabe von Pollenfluginformationen. In: Bergmann KC, Stiftung Deutscher Polleninformationsdienst, editors. 3. Europäisches Pollenflug-Symposium - Bad Lippspringe - Vorträge und Berichte. Düsseldorf: Vereinigte Verlagsanstalten GmbH; 1994. pp. 21–32

    Google Scholar 

  22. Nilsson S, Persson St. Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana. 1981;20:179–82

    Article  Google Scholar 

  23. Jäger S. Tageszeitliche Verteilung und langjährige Trends bei allergiekompetenten Pollen. Allergologie. 1990;13:159–82

    Google Scholar 

  24. de Weger LA, Bergmann KC, Rantio-Lehtimäki A, Dahl Å, Buters J, Déchamp C, et al. Impact of pollen. In: Sofiev M, Bergmann KC, editors. Allergenic pollen: a review of the production, release, distribution and health impacts. Dordrecht: Springer; 2013. pp. 161–215

    Chapter  Google Scholar 

  25. Wachter RKF. Der Gehalt der Luft über mitteleuropäischen Messstellen an Pollen von Artemisia, Plantago und Rumex. München: Dissertations- und Fotodruck Frank oHG; 1978.

    Google Scholar 

  26. von Wahl PG, Puls KE. Pollenemission und Pollenflug von Kräuterpollen. Grana. 1991;30:260–4

    Article  Google Scholar 

  27. Raynor GS, Ogden EC, Hayes JV. Dispersion and deposition of timothy pollen from experimental sources. Agric Meteorol. 1972;9:347–66

    Article  Google Scholar 

  28. Fuckerieder K. Der Graspollengehalt der Luft in Mitteleuropa. Berichte 9/76. Berlin: Umweltbundesamt; 1976

    Google Scholar 

  29. Käpylä M. Diurnal variation of non-arboreal pollen in the air in Finland. Grana. 1981;20:55–9

    Article  Google Scholar 

  30. Rantio-Lehtimäki A, Koivikko A, Kupias R, Mäkinen Y, Pohjola A. Significance of sampling height of airborne particles for aerobiological information. Allergy. 1991;46:68–76

    Article  PubMed  Google Scholar 

  31. Spieksma FTM, van Noort P, Nikkels H. Influence of nearby stands of Artemisia on street-level versus roof-top-level ratio’s of airborne pollen quantities. Aerobiologia (Bologna) 2000;16:21–4

    Article  Google Scholar 

  32. Bogawski P, Grewling L, Fratczak A. Flowering phenology and potential pollen emission of three Artemisia species in relation to airborne pollen data in Poznan (Western Poland). Aerobiologia (Bologna). 2015; doi:10.1007/s10453-015-9397-z

    Google Scholar 

  33. Munuera Giner M, Carrión García JS, García Sellés J. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. Int J Biometeorol. 1999;43:51–63

    Article  CAS  PubMed  Google Scholar 

  34. Norris-Hill J, Emberlin J. Diurnal variation of pollen concentration in the air of north-central London. Grana. 1991; doi:10.1080/00173139109427803.

    Google Scholar 

  35. Peel RG, Ørby PV, Skjøth CA, Kennedy R, Schlünssen V, Smith M, et al. Seasonal variation in diurnal atmospheric grass pollen concentration profiles. Biogeosciences. 2014;11:821–32.

    Article  Google Scholar 

  36. Alcázar P, Galán C, Cariñanos P, Domínguez-Vilches E. Diurnal variation of airborne pollen at two different heights. Invest Allergol Clin Immunol. 1999a;9:89–95

    Google Scholar 

  37. Käpylä M. Diurnal variation of tree pollen in the air in Finland. Grana. 1984;23:167–76

    Article  Google Scholar 

  38. Hart ML, Wentworth JE, Bailey JP. The effects of trap height and weather variables on recorded pollen concentration at Leicester. Grana. 1994; doi:10.1080/00173139409427840

    Google Scholar 

  39. Alcázar P, Galán C, Cariñanos P, Domínguez-Vilches E. Effects of sampling height and climatic conditions in aerobiological studies. Invest Allergol Clin Immunol. 1999b;9:253–61

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anke Simoleit.

Additional information

Conflict of interest

A. Simoleit, M. Werchan, B. Werchan, H.-G. Mücke, U. Gauger, T. Zuberbier, and K.-C. Bergmann declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Cite this as

Simoleit A, Werchan M, Werchan B, Mücke H-G, Gauger U, Zuberbier T, Bergmann K-C. Birch, grass, and mugwort pollen concentrations and intradiurnal patterns at two different urban sites in Berlin, Germany. Allergo J Int 2017;26:155–64

DOI: 10.1007/s40629-017-0012-4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simoleit, A., Werchan, M., Werchan, B. et al. Birch, grass, and mugwort pollen concentrations and intradiurnal patterns at two different urban sites in Berlin, Germany. Allergo J 26, 28–36 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: