Advertisement

Allergo Journal

, Volume 21, Issue 5, pp 307–314 | Cite as

Das Surfactant-System der oberen Atemwege: Aufbau, Funktion und klinische Bedeutung

  • Ludger KlimekEmail author
  • Annette Sperl
  • Andreas Glowania
  • Oliver Pfaar
Übersicht Review Article
  • 108 Downloads

Zusammenfassung

Als Surfactant wird ein Gemisch aus verschiedenen Lipiden und Lipoproteinen bezeichnet, das in erster Linie in der Lunge, aber auch anderenorts in den Atemwegen zu finden ist. Es besteht zu 90 % aus Lipiden, von denen sich wiederum 90 % aus verschiedenen Phospholipiden rekrutieren, 10 % sind Cholesterine. Unter den Phospholipiden machen gesättigte und ungesättigte Formen des Phosphatidylcholins den mengenmäßig größten Anteil aus. Die restlichen 10 % des Surfactant bestehen aus Proteinen, wobei neben einem kleinen Anteil von Serumproteinen vier surfactantspezifische Proteine (SP-A, SP-B, SP-C und SP-D) bekannt sind. SP-A gilt als das wichtigste Surfactant-Protein und ist in der Lage, die Oberflächenspannung auf der Schleimhaut zu reduzieren, wodurch die die Schleimhaut bedeckende zweilagige Mukusschicht stabilisiert wird. Zudem verbessert es den mukoziliaren Transport. Zahlreiche In-vivo- und In-vitro-Studien haben gezeigt, dass SP-A an Lipopolysaccharid-Strukturen von Pilzen, Viren und Bakterien bindet und hierdurch deren Phagozytose und Abtötung durch Makrophagen verbessert. Somit scheint eine weitere Funktion des Surfactant in der Verbesserung der unspezifischen lokalen Schleimhautabwehr zu bestehen.

Schlüsselwörter

Surfactant mukoziliarer Transport Surfactant-Protein A Phospholipide 

Verwendete Abkürzungen

cAMP

Zyklisches Adenosinmonophosphat

CSF

Colony-stimulating factor

DNCG

Dinatriumcromoglykat

LPS

Lipopolysaccharide

mRNA

Boten(„messenger“)-Ribonukleinsäure

SP-A

Surfactant-Protein A

TNF

Tumornekrosefaktor

The surfactant system of the upper airways: structure, function and clinical implications

Summary

Surfactant is a mixture of lipids and lipoproteins that is mainly found in the lung alveoli, but also at most other localizations of the human airways. Lipids account for 90 % of surfactant and of them, 90 % are phospholipids. The remaining 10 % of surfactant are proteins, and besides small amounts of serum proteins, four surfactant-specific proteins (SP-A, SP-B, SP-C and SP-D) are known. SP-A is the most important surfactant protein and is able to lower the surface tension of the airway mucosa, thus stabilizing the mucus layer at the mucosa, and increases mucociliary transport. Several in vivo and in vitro studies have shown, that SP-A binds to moulds, viruses and bacteria and enhances the phagocytosis and killing of such pathogens via macrophages. Thus, another major role of surfactant may be related to unspecific local host defense mechanisms.

Key words

Surfactant mucociliary transport;kw]surfactant protein A phospholipids 

Literatur

  1. 1.
    Acarregui MJ, Snyder JM, Mitchell MD, Mendelson CR. Prostaglandins regulate surfactant protein A (SP-A) gene expression in human fetal lung in vitro. Endocrinology 1990; 127: 1105–113PubMedCrossRefGoogle Scholar
  2. 2.
    Acarregui MJ, Snyder JM, Mendelson CR. Oxygen modulates the differentiation of human fetal lung in vitro and its responsiveness to cAMP. Am J Physiol 1993; 264: L465–L474PubMedGoogle Scholar
  3. 3.
    Antunes MB, Gudis DA, Cohen NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin North Am 2009; 29: 631–643PubMedCrossRefGoogle Scholar
  4. 4.
    Bachofen H, Gerber U, Gehr P, Amrein M, Schürch S. Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro. Biochim Biophys Acta 2005; 1720: 59–72PubMedCrossRefGoogle Scholar
  5. 5.
    Ballard PL, Hawgood S, Liley H, Wellenstein G, Gonzales LW, Benson B, Cordell B, White RT. Regulation of pulmonary surfactant apoprotein SP 28–36 gene in fetal human lung. Proc Natl Acad Sci USA 1986; 83: 9527–9531PubMedCrossRefGoogle Scholar
  6. 6.
    Ballard PL, Liley HG, Gonzales LW, Odom MW, Ammann AJ, Benson B, White RT, Williams MC. Interferon-gamma and synthesis of surfactant components by cultured human fetal lung. Am J Respir Cell Mol Biol 1990; 2: 137–143PubMedGoogle Scholar
  7. 7.
    Baroody FM. Mucociliary transport in chronic rhinosinusitis. Clin Allergy Immunol 2007; 20: 103–119PubMedGoogle Scholar
  8. 8.
    Benne CA, Benaissa-Trouw B, Strijp JA van, Kraaijeveld CA, Iwaarden JF van. Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages. Eur J Immunol 1997; 27: 886–890PubMedCrossRefGoogle Scholar
  9. 9.
    Blau H, Riklis S, Kravtsov V, Kalina M. Secretion of cytokines by rat alveolar epithelial cells: possible regulatory role for SP-A. Am J Physiol 1994; 266: L148–L155PubMedGoogle Scholar
  10. 10.
    Böhm M, Avgitidou G, El Hassan E, Mösges R. Liposomes: a new non-pharmacological therapy concept for seasonal-allergic-rhinoconjunctivitis. Eur Arch Otorhinolaryngol 2012; 269(2): 495–502PubMedCrossRefGoogle Scholar
  11. 11.
    Creuwels LA, Golde LM van, Haagsman HP. The pulmonary surfactant system: biochemical and clinical aspects. Lung 1997; 175: 1–39PubMedCrossRefGoogle Scholar
  12. 12.
    Crouch EC. Collectins and pulmonary host defense. Am J Respir Cell Mol Biol 1998; 19: 177–201PubMedGoogle Scholar
  13. 13.
    Dutton JM, Goss KL, Khubchandani KR, Shah CD, Smith RJH, Snyder JM. Surfactant protein A in rabbit sinus and middle ear mucosa. Ann Otol Rhinol Laryngol 1999; 108Google Scholar
  14. 14.
    Floros J, Steinbrink R, Jacobs K, Phelps D, Kriz R, Recny M, Sultzman L, Jones S, Taeusch HW, Frank HA, Fritsch EF. Isolation and characterization of cDNA clones for the 35-kDa pulmonary surfactant-associated protein. J Biol Chem 1986; 261: 9029–9033PubMedGoogle Scholar
  15. 15.
    Gehr P, Green FHY, Geiser M, Im Hof V, Lee MM, Schürch S. Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med 1996; 9(2): 163–168PubMedCrossRefGoogle Scholar
  16. 16.
    Gehr P, Im Hof V, Geiser M, Schürch S. Der mukoziliäre Apparat der Lunge — die Rolle des Surfactant. Schweiz Med Wochenschr 2000; 130: 691–698PubMedGoogle Scholar
  17. 17.
    Hahn C, Mösges R, Böhm M. Vergleich der Verträglichkeit und der Auswirkungen auf die Lebensqualität der Behandlungsmethode mit einem liposomalen Nasenspray gegenüber der Anwendung Dexpanthenol-haltiger Nasensalbe bzw. Isotonem NaCl-Spray bei Patienten mit Rhinitis sicca. Allergo J 2011; 20: S53Google Scholar
  18. 18.
    Holm BA, Enhorning G, Notter RH. A biophysical mechanism by which plasma proteins inhibit lung surfactant activity. Chem Phys Lipids 1988; 49: 49–55PubMedCrossRefGoogle Scholar
  19. 19.
    Horowitz S, Watkins RH, Auten RL Jr, Mercier CE, Cheng ER. Differential accumulation of surfactant protein A, B, and C mRNAs in two epithelial cell types of hyperoxic lung. Am J Respir Cell Mol Biol 1991; 5: 511–515PubMedGoogle Scholar
  20. 20.
    Ikegami M, Jobe A, Berry D. A protein that inhibits surfactant in respiratory distress syndrome. Biol Neonate 1986; 50: 121–129PubMedCrossRefGoogle Scholar
  21. 21.
    Iwaarden F van, Welmers B, Verhoef J, Haagsman HP, Golde LM van. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 1990; 2: 91–98PubMedGoogle Scholar
  22. 22.
    Iwaarden JF van, Strijp JA van, Visser H, Haagsman HP, Verhoef J, Golde LM van. Binding of surfactant protein A (SP-A) to herpes simplex virus type 1-infected cells is mediated by the carbohydrate moiety of SP-A. J Biol Chem 1992; 267: 25039–25043PubMedGoogle Scholar
  23. 23.
    Iwaarden JF van, Pikaar JC, Storm J, Brouwer E, Verhoef J, Oosting RS, Golde LM van, Strijp JA van. Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochem J 1994; 303: 407–411PubMedGoogle Scholar
  24. 24.
    Iwaarden JF van, Teding van Berkhout F, Whitsett JA, Oosting RS, Golde LM van. A novel procedure for the rapid isolation of surfactant protein A with retention of its alveolar-macrophage-stimulating properties. Biochem J 1995; 309: 551–555PubMedGoogle Scholar
  25. 25.
    Ji X, Wang Q, Xie J, Yang K. Measurement of components of the phospholipid of the surfactant in irrigating fluid from the nasopharynx of patients with chronic sinusitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2007; 21: 63–66PubMedGoogle Scholar
  26. 26.
    Kabha K, Schmegner J, Keisari Y, Parolis H, Schlepper-Schaeffer J, Ofek I. SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol 1997 272, L344–L352PubMedGoogle Scholar
  27. 27.
    Katyal SL, Singh G, Locker J. Characterization of a second human pulmonary surfactant-associated protein SP-A gene. Am J Respir Cell Mol Biol 1992; 6: 446–452PubMedGoogle Scholar
  28. 28.
    Klimek L. Aufbau und Funktion des oberen Respirationstrakts. In: Saloga J, Klimek L, Buhl R, Mann W, Knop J (Hrsg). Allergologie-Handbuch, Grundlagen und klinische Praxis. Schattauer, Stuttgart, 2006: 25–30Google Scholar
  29. 29.
    Kobayashi K, Yamanaka N, Kataura A, Ohtani S, Saito T, Akino T. Presence of an 80 kilodalton protein, cross-reacted with monoclonal antibodies to pulmonary surfactant protein A, in the human middle ear. Ann Otol Rhinol Laryngol 1992; 101: 490–495Google Scholar
  30. 30.
    Koziel H, Phelps DS, Fishman JA, Armstrong MY, Richards FF, Rose RM. Surfactant protein-A reduces binding and phagocytosis of Pneumocystis carinii by human alveolar macrophages in vitro. Am J Respir Cell Mol Biol 1998; 18: 834–843PubMedGoogle Scholar
  31. 31.
    Kremlev SG, Phelps DS. Surfactant protein A stimulation of inflammatory cytokine and immunoglobulin production. Am J Physiol 1994; 267: L712–L719PubMedGoogle Scholar
  32. 32.
    Kremlev SG, Phelps DS. Effect of SP-A and surfactant lipids on expression of cell surface markers in the THP-1 monocytic cell line. Am J Physiol 1997; 272: L1070–L1077PubMedGoogle Scholar
  33. 33.
    Kremlev SG, Umstead TM, Phelps DS. Effects of surfactant protein A and surfactant lipids on lymphocyte proliferation in vitro. Am J Physiol 1994; 267: L357–L364PubMedGoogle Scholar
  34. 34.
    Kumar AR, Snyder JM. Differential regulation of SP-A1 and SP-A2 genes by cAMP, glucocorticoids, and insulin. Am J Physiol 1998; 274: L177–L185PubMedGoogle Scholar
  35. 35.
    Kuroki Y, Akino T. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine. J Biol Chem 1991; 266: 3068–3073PubMedGoogle Scholar
  36. 36.
    Madan T, Kishore U, Shah A, Eggleton P, Strong P, Wang JY, Aggrawal SS, Sarma PU, Reid KB. Lung surfactant proteins A and D can inhibit spe-cific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils. Clin Exp Immunol 1997; 110: 241–249PubMedCrossRefGoogle Scholar
  37. 37.
    Manz-Keinke H, Plattner H, Schlepper-Schafer J. Lung surfactant protein A (SP-A) enhances serum-independent phagocytosis of bacteria by alveolar macrophages. Eur J Cell Biol 1992; 57: 95–100PubMedGoogle Scholar
  38. 38.
    McIntosh JC, Mervin-Blake S, Conner E, Wright JR. Surfactant protein A protects growing cells and reduces TNF-alpha activity from LPS-stimulated macrophages. Am J Physiol 1996; 271: L310–L319PubMedGoogle Scholar
  39. 39.
    Mendelson CR, Chen C, Boggaram V, Zacharias C, Snyder JM. Regulation of the synthesis of the major surfactant apoprotein in fetal rabbit lung tissue. J Biol Chem 1986; 261: 9938–9943PubMedGoogle Scholar
  40. 40.
    Meyer-Gutknecht H, Mösges R. Wirkung eines neuartigen liposomalen Nasensprays auf die Symptome der saisonalen allergischen Rhinitis. HNO kompakt 2008; Suppl 1: 1–5Google Scholar
  41. 41.
    Olze H, Bachert C. Welche Rolle spielt IgE bei chronischer Rhinosinusitis mit Polyposis nasi? Allergo J 2012; 21: 243–248CrossRefGoogle Scholar
  42. 42.
    O'Reilly MA, Gazdar AF, Morris RE, Whitsett JA. Differential effects of glucocorticoid on expression of surfactant proteins in a human lung adenocar-cinoma cell line. Biochim Biophys Acta 1988; 970: 194–204PubMedCrossRefGoogle Scholar
  43. 43.
    Odom MJ, Snyder JM, Mendelson CR. Adenosine 3',5'-monophosphate analogs and beta-adrenergic agonists induce the synthesis of the major surfactant apoprotein in human fetal lung in vitro. Endocrinology 1987; 121: 1155–1163PubMedCrossRefGoogle Scholar
  44. 44.
    Persson A, Rust K, Chang D, Moxley M, Longmore W, Crouch E. CP 4: a pneumocyte-derived collagenous surfactant-associated protein. Evidence of heterogeneity of collagenous surfactant proteins. Biochemistry 1988; 27: 8576–8584PubMedCrossRefGoogle Scholar
  45. 45.
    Pikaar JC, Voorhout WF, Golde LM van, Verhoef J, Van Strijp JA, Iwaarden JF van. Opsonic activities of surfactant proteins A and D in phagocytosis of gram-negative bacteria by alveolar macrophages. J Infect Dis 1995; 172: 481–489PubMedCrossRefGoogle Scholar
  46. 46.
    Rapport PN, Lim DJ, Weiss HS. Surface-active agent in Eustachian tube function. Arch Otolaryngol 1975; 101: 305–311PubMedCrossRefGoogle Scholar
  47. 47.
    Rasp G. Physiologie und Immunologie der Nasenschleimhaut. In: Grevers G (Hrsg). Praktische Rhinologie. Urban & Schwarzenberg, 1998: 1–15Google Scholar
  48. 48.
    Rice WR, Ross GF, Singleton FM, Dingle S, Whitsett JA. Surfactant-associated protein inhibits phospholipid secretion from type II cells. J Appl Physiol 1987; 63: 692–698PubMedGoogle Scholar
  49. 49.
    Schelenz S, Malhotra R, Sim RB, Holmskov U, Bancroft GJ. Binding of host collectins to the pathogenic yeast Cryptococcus neoformans: human surfactant protein D acts as an agglutinin for acapsular yeast cells. Infect Immun 1995; 63: 3360–3366PubMedGoogle Scholar
  50. 50.
    Schlosser RJ. Surfactant and its role in chronic sinusitis. Ann Otol Rhinol Laryngol Suppl 2006; 196: 40–44Google Scholar
  51. 51.
    Snyder JM, Mendelson CR. Insulin inhibits the accumulation of the major lung surfactant apoprotein in human fetal lung explants maintained in vitro. Endocrinology 1987; 120: 1250–1257PubMedCrossRefGoogle Scholar
  52. 52.
    Stannard W, O'Callaghan C. Ciliary function and the role of cilia in clearance. J Aerosol Med 2006; 19: 110–115PubMedCrossRefGoogle Scholar
  53. 53.
    Stuck BA, Bachert C, Federspil P, Hosemann W, Klimek L, Mösges R, Pfaar O, Rudack C, Sitter H, Wagenmann M, Weber R, Hörmann K. Leitlinie „Rhinosinusitis“ — S2-Leitlinie der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie. Allergo J 2012; 21(3): 165–191CrossRefGoogle Scholar
  54. 54.
    Sugahara K, Iyama K, Sano K, Kuroki Y, Akino T, Matsumoto M. Overexpression of surfactant protein SP-A, SP-B, and SP-C mRNA in rat lungs with lipopolysaccharide-induced injury. Lab Invest 1996; 74: 209–220PubMedGoogle Scholar
  55. 55.
    Tino MJ, Wright JR. Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Physiol 1996; 270: L677–L688PubMedGoogle Scholar
  56. 56.
    Voss T, Melchers K, Scheirle G, Schafer KP. Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol 1991; 4: 88–94PubMedGoogle Scholar
  57. 57.
    Weaver TE, Whitsett JA. Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem J 1991; 273: 249–264PubMedGoogle Scholar
  58. 58.
    Weston LA, Mösges R. Behandlung der saisonalen allergischen Rhinokonjunktivitis mit einem liposomalen Nasenspray. Allergologie 2010; 33: 196–204Google Scholar
  59. 59.
    Weiss D, Sachse F, Rudack C. Staphylokokken bei chronischer Rhinosinusitis mit Nasenpolypen. Allergo J 2012; 21(3): 187–191CrossRefGoogle Scholar
  60. 60.
    White P. Effect of exogenous surfactant on Eustachian tube function in the rat. Am J Otolaryngol 1989; 10: 301–304PubMedCrossRefGoogle Scholar
  61. 61.
    White RT, Damm D, Miller J, Spratt K, Schilling J, Hawgood S, Benson B, Cordell B. Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature (London) 1985; 317: 361–363CrossRefGoogle Scholar
  62. 62.
    Whitsett JA, Pilot T, Clark JC, Weaver TE. Induction of surfactant protein in fetal lung. Effects of cAMP and dexamethasone on SAP-35 RNA and synthesis. J Biol Chem 1987a; 262: 5256–5261PubMedGoogle Scholar
  63. 63.
    Whittsett JA, Weaver TE, Lieberman MA, Clark JC, Daugherty C. Differential effects of epidermal growth factor and transforming growth factor-β on synthesis of Mr = 35,000 surfactant-associated protein in fetal lung. J Biol Chem 1987b; 262: 7908–7913Google Scholar
  64. 64.
    Woodworth BA, Smythe N, Spicer SS, Schulte BA, Schlosser RJ. Presence of surfactant lamellar bodies in normal and diseased sinus mucosa. ORL J Otorhinolaryngol Relat Spec 2005; 67: 199–202PubMedCrossRefGoogle Scholar
  65. 65.
    Woodworth BA, Neal JG, Newton D, Joseph K, Kaplan AP, Baatz JE, Schlosser RJ. Surfactant protein A and D in human sinus mucosa: a preliminary report. ORL J Otorhinolaryngol Relat Spec 2007; 69: 57–60PubMedCrossRefGoogle Scholar
  66. 66.
    Wright JR. Immunomodulatory functions of surfactant. Physiol Rev 1997; 77: 931–962PubMedGoogle Scholar
  67. 67.
    Wright JR, Wager RE, Hawgood S, Dobbs L, Clements JA. Surfactant apoprotein Mr = 26,000–36,000 enhances uptake of liposomes by type II cells. J Biol Chem 1987; 262: 2888–2894PubMedGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • Ludger Klimek
    • 1
    • 2
    Email author
  • Annette Sperl
    • 1
  • Andreas Glowania
    • 1
  • Oliver Pfaar
    • 1
  1. 1.Zentrum für Rhinologie und AllergologieWiesbadenDeutschland
  2. 2.Zentrum für Rhinologie und AllergologieWiesbadenDeutschland

Personalised recommendations