Skip to main content
Log in

Saccharomyces boulardii CNCM I-745 — die medizinische Hefe verbessert die Funktion intestinaler Enzyme

Saccharomyces boulardii CNCM I-745 — the medicinal yeast improves intestinal enzyme function

  • Published:
MMW - Fortschritte der Medizin Aims and scope

Zusammenfassung

Hintergrund

Saccharomyces boulardii CNCM I-745 ist eine probiotische medizinische Hefe, die in der Prävention und Behandlung von Diarrhöen eingesetzt wird. Sie verfügt über zahlreiche Wirkungen, u. a. immunologische und Antitoxin-Effekte, sie bindet Pathogene und wirkt günstig auf die intestinale Mikrobiota. Außerdem wurden ausgeprägte trophische Wirkungen nachgewiesen.

Methode

Im Fokus dieser Übersichtsarbeit stehen die Effekte von S. boulardii CNCM I-745 auf Verdauungsenzyme, die in der Bürstensaummembran lokalisiert sind. Eine wichtige Rolle wird in diesem Zusammenhang Polyaminen zugeschrieben, die von S. boulardii CNCM I-745 synthetisiert und sezerniert werden.

Ergebnisse und Schlussfolgerungen

Polyamine sind essenziell für die Zellproliferation und -differenzierung. Sie verstärken die Expression von intestinalen Enzymen sowie Nährstofftransportsystemen und beeinflussen direkt die Nukleinsäurebindungskapazität. S. boulardii CNCM I-745 induziert Signale über Mitogen-aktivierte Proteinkinase-Kaskaden (MAP-Kinase-Weg) und beeinflusst den PI3-Kinase-Signalweg. Weiterhin sezerniert S. boulardii CNCM I-745 bestimmte Enzyme, welche die Nährstoffbereitstellung sowohl für die Hefe selbst als auch für den Wirtsorganismus fördern. Die verstärkte Präsenz von Verdauungsenzymen trägt offensichtlich entscheidend zur klinischen Wirkung von S. boulardii CNCM I-745 bei.

Abstract

Background

Saccharomyces boulardii CNCM I-745 is a probiotic medicinal yeast used in the prevention and treatment of diarrhea. It has numerous effects, i. a. immunological and antitoxin effects, it binds pathogens and has a beneficial effect on the intestinal microbiota. In addition, pronounced trophic effects were detected.

Method

The focus of this review is on the effects of S. boulardii CNCM I-745 on digestive enzymes located in the brush border membrane. An important role in this context is attributed to polyamines which are synthesized and secreted by S. boulardii CNCM I-745.

Results and Conclusions

Polyamines are essential for cell proliferation and differentiation. They enhance the expression of intestinal enzymes as well as nutrient transport systems and directly influence the nucleic acid binding capacity. S. boulardii CNCM I-745 induces signals via mitogen-activated protein kinase cascades (MAP kinase pathway) and influences the PI3 kinase signaling pathway. Furthermore, S. boulardii CNCM I-745 secretes certain enzymes that promote nutrient delivery to both the yeast itself and the host organism. The increased presence of digestive enzymes obviously contributes significantly to the clinical effect of S. boulardii CNCM I-745.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Edwards-Ingram L et al. Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol 2007; 73(8): 2458–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graff S et al. Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol Pharm Bull 2008; 31(2): 266–272.

    Article  CAS  PubMed  Google Scholar 

  3. Schneider SM et al. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J Gastroenterol 2005; 11(39): 6165–6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Breves G et al. Application of the colon-simulation technique for studying the effects of Saccharomyces boulardii on basic parameters of porcine cecal microbial metabolism disturbed by clindamycin. Digestion 2000; 61(3): 193–200.

    Article  CAS  PubMed  Google Scholar 

  5. Castagliuolo I et al. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 1999; 67(1): 302–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Castagliuolo I et al. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun 1996; 64(12): 5225–5232.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Buts JP et al. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res 2006; 60(1): 24–29.

    Article  CAS  PubMed  Google Scholar 

  8. Tiago FC et al. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol 2012; 61(Pt 9): 1194–1207.

    Article  CAS  PubMed  Google Scholar 

  9. Martins FS et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS One 2010; 5(1): e8925.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gedek BR. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 1999; 42(4): 261–264.

    Article  CAS  PubMed  Google Scholar 

  11. Czerucka D, Rampal P. Effect of Saccharomyces boulardii on cAMP- and Ca2+ -dependent Cl- secretion in T84 cells. Dig Dis Sci 1999; 44(11): 2359–2368.

    Article  CAS  PubMed  Google Scholar 

  12. Swidsinski A, Loening-Baucke V, Herber A. Mucosal flora in Crohn’s disease and ulcerative colitis — an overview. J Physiol Pharmacol 2009; 60 Suppl 6: 61–71.

    PubMed  Google Scholar 

  13. Terciolo C et al. Saccharomyces boulardii CNCM I-745 restores intestinal barrier integrity by regulation of E-cadherin recycling. J Crohns Colitis 2017; 11(8): 999–1010.

    Article  PubMed  Google Scholar 

  14. More MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis — a review. Clin Exp Gastroenterol 2015; 11: 237–255.

    Article  Google Scholar 

  15. Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin Exp Gastroenterol 2016; 9: 269–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dinleyici EC et al. Saccharomyces boulardii CNCM I-745 in different clinical conditions. Expert Opin Biol Ther 2014; 14(11): 1593–1609.

    Article  CAS  PubMed  Google Scholar 

  17. Zanello G et al. Saccharomyces boulardii effects on gastrointestinal diseases. Curr Issues Mol Biol 2009; 11(1): 47–58.

    CAS  PubMed  Google Scholar 

  18. Szajewska H, Kolodziej M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther 2015; 42(7): 793–801.

    Article  CAS  PubMed  Google Scholar 

  19. Drozdowski LA, Thomson AB. Intestinal sugar transport. World J Gastroenterol 2006; 12(11): 1657–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomson AB, Keelan M, Wild GE. Nutrients and intestinal adaptation. Clin Invest Med 1996; 19(5): 331–345.

    CAS  PubMed  Google Scholar 

  21. Buret AG. Pathophysiology of enteric infections with Giardia duodenalius. Parasite 2008; 15(3): 261–265.

    Article  CAS  PubMed  Google Scholar 

  22. Corinaldesi R et al. Clinical approach to diarrhea. Intern Emerg Med 2012; 7 Suppl 3: S255–S262.

    Article  PubMed  Google Scholar 

  23. Buts JP et al. Saccharomyces boulardii enhances N-terminal peptide hydrolysis in suckling rat small intestine by endoluminal release of a zinc-binding metalloprotease. Pediatr Res 2002; 51(4): 528–534.

    Article  CAS  PubMed  Google Scholar 

  24. Buts JP et al. Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr Res 1986; 20(2): 192–196.

    Article  CAS  PubMed  Google Scholar 

  25. Treem WR et al. Sacrosidase therapy for congenital sucrase-isomaltase deficiency. J Pediatr Gastroenterol Nutr 1999; 28(2): 137–142.

    Article  CAS  PubMed  Google Scholar 

  26. Remenova T et al. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat. Orphanet J Rare Dis 2015; 10: 81.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Buts JP et al. Characterization of alpha,alpha-trehalase released in the intestinal lumen by the probiotic Saccharomyces boulardii. Scand J Gastroenterol 2008; 43(12): 1489–1496.

    Article  CAS  PubMed  Google Scholar 

  28. Zaouche A et al. Effects of oral Saccharomyces boulardii on bacterial overgrowth, translocation, and intestinal adaptation after small-bowel resection in rats. Scand J Gastroenterol 2000; 35(2): 160–165.

    Article  CAS  PubMed  Google Scholar 

  29. Jahn HU et al. Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 1996; 57(2): 95–104.

    Article  CAS  PubMed  Google Scholar 

  30. Bilski J et al. The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators Inflamm 2017; 2017: 9074601.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014; 20(42): 15650–15656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lalles JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 2014; 72(2): 82–94.

    Article  PubMed  Google Scholar 

  33. Wagner CA et al. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch 2014; 466(1): 139–153.

    Article  CAS  Google Scholar 

  34. Molnar K et al. Intestinal alkaline phosphatase in the colonic mucosa of children with inflammatory bowel disease. World J Gastroenterol 2012; 18(25): 3254–3259.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Molnar K et al. Decreased mucosal expression of intestinal alkaline phosphatase in children with coeliac disease. Virchows Arch 2012; 460(2): 157–161.

    Article  CAS  PubMed  Google Scholar 

  36. Buts JP et al. Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 1999; 45(1): 89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan X et al. Alzheimer’s disease-like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging 2016; 38: 151–163.

    Article  CAS  PubMed  Google Scholar 

  38. Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY) 2011; 3(8): 716–732.

    Article  Google Scholar 

  39. Buts JP, De KN, De RL. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr Res 1994; 36(4): 522–527.

    Article  CAS  PubMed  Google Scholar 

  40. Wollin A, Wang X, Tso P. Nutrients regulate diamine oxidase release from intestinal mucosa. Am J Physiol 1998; 275(4 Pt 2): R969–R975.

    CAS  PubMed  Google Scholar 

  41. Buts JP, De KN. Transduction pathways regulating the trophic effects of Saccharomyces boulardii in rat intestinal mucosa. Scand J Gastroenterol 2010; 45(2): 175–185.

    Article  CAS  PubMed  Google Scholar 

  42. Buts JP, Dekeyser N. Raf: a key regulatory kinase for transduction of mitogenic and metabolic signals of the probiotic Saccharomyces boulardii. Clin Res Hepatol Gastroenterol 2011; 35(8–9): 596–597.

    Article  PubMed  Google Scholar 

  43. Leroy D et al. Direct identification of a polyamine binding domain on the regulatory subunit of the protein kinase casein kinase 2 by photoaffinity labeling. J Biol Chem 1995; 270(29): 17400–17406.

    Article  CAS  PubMed  Google Scholar 

  44. Stark F et al. Protein kinase CK2 links polyamine metabolism to MAPK signalling in Drosophila. Cell Signal 2011; 23(5): 876–882.

    Article  CAS  PubMed  Google Scholar 

  45. Chang C et al. Protective effect of Saccharomyces boulardii on deoxynivalenol-induced injury of porcine macrophage via attenuating p38 MAPK signal pathway. Appl Biochem Biotechnol 2017; 182(1): 411–427.

    Article  CAS  PubMed  Google Scholar 

  46. More MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 improves intestinal enzyme function: a trophic effects review. Clin Med Insights Gastroenterol 2018; 11: 1179552217752679.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amiri M et al. The diverse forms of lactose intolerance and the putative linkage to several cancers. Nutrients 2015; 7(9): 7209–7230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen SA. The clinical consequences of sucrase-isomaltase deficiency. Mol Cell Pediatr 2016; 3(1): 5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Money ME, Camilleri M. Review: Management of postprandial diarrhea syndrome. Am J Med 2012; 125(6): 538–544.

    Article  CAS  PubMed  Google Scholar 

  50. Lentze M. Congenital diseases of the gastrointestinal tract. Georgian Med News 2014(230): 46–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margret I. Moré Ph. D..

Additional information

This article is part of a supplement not sponsored by the industry.

Interessenkonflikt

Margret I. Moré erklärt, dass kein Interessenkonflikt vorliegt.

Die Arbeit wurde unterstützt von der MEDICE Arzneimittel Pütter GmbH & Co. KG, Iserlohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moré, M.I. Saccharomyces boulardii CNCM I-745 — die medizinische Hefe verbessert die Funktion intestinaler Enzyme. MMW - Fortschritte der Medizin 161 (Suppl 4), 20–24 (2019). https://doi.org/10.1007/s15006-019-0290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15006-019-0290-5

Schlüsselwörter

Keywords

Navigation