Skip to main content

Mehr als ein Expektorans: neue wissenschaftliche Daten zu Ambroxol im Kontext der Behandlung bronchopulmonaler Erkrankungen

More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases

Zusammenfassung

Hintergrund

Ambroxol ist seit Jahrzehnten in der Behandlung akuter und chronischer Atemwegserkrankungen etabliert. 2015 hat die Europäische Arzneimittelbehörde das klinische Nutzen-Risiko-Verhältnis des Arzneistoffes neu bewertet.

Fragestellung

Welche neuen wissenschaftlichen Daten zu Ambroxol gibt es, die für die Therapie bronchopulmonaler Erkrankungen von pharmakologischem oder klinischem Interesse sind?

Methode

Die Übersichtsarbeit basiert auf einer systematischen Literaturrecherche in Medline mit dem Suchbegriff „ambroxol“ über den Publikationszeitraum 2006–2015. Nicht relevante Publikationen wurden manuell ausgeschlossen.

Ergebnisse und Schlussfolgerungen

Ambroxol wird nach wie vor intensiv beforscht. Die traditionelle Indikation als Expektorans wird dabei bestätigt. Es zeigt sich aber auch ein immer besseres Verständnis der vielfältigen Wirkmechanismen wie auch die immer exaktere Modellierung der untersuchten Strukturen. Neue Einsatzgebiete sind denkbar, z. B. bei Patienten mit schwerer Lungenerkrankung, die sich einer Operation unterziehen oder intensivmedizinisch behandelt werden müssen, als Adjuvans bei antiinfektiösen Therapien, vor allem bei Infektionen mit Biofilm-bildenden Erregern, oder bei seltenen Krankheitsbildern wie den lysosomalen Speicherkrankheiten. Ein abschließender Beweis der klinischen Relevanz in diesen Einsatzgebieten steht jedoch noch aus.

Abstract

Background

Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug.

Objective

What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available?

Method

The review is based on a systematic literature research in medline with the search term “ambroxol” during the publication period 2006–2015. Non-relevant publications were excluded manually.

Results and conclusions

Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Claeson UP, et al. Adhatoda vasica: a critical review of ethnopharmacological and toxicological data. J Ethnopharmacol 2000; 72(1–2): 1–20.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Disse BG. The pharmacology of ambroxol — review and new results. Eur J Respir Dis Suppl 1987; 153: 255–262.

    CAS  PubMed  Google Scholar 

  3. 3.

    Paleari D, et al. Ambroxol: a multifaceted molecule with additional therapeutic potentials in respiratory disorders of childhood. Expert Opin Drug Discov 2011; 6(11): 1203–1214.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    de Castro T, de Cacanindin D. Clinical trial on ambroxol in acute and chronic bronchitis. Philipp J Intern Med 1988; 26(6): 363–367.

    Google Scholar 

  5. 5.

    Germouty J, Jirou-Najou JL. Clinical efficacy of ambroxol in the treatment of bronchial stasis. Clinical trial in 120 patients at two different doses. Respiration 1987; 51 Suppl 1: 37–41.

    PubMed  Google Scholar 

  6. 6.

    Iravani J, Melville GN. Mucociliary function of the respiratory tract as influenced by drugs. Respiration 1974; 31(4): 350–357.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Grassi C, et al. Biomedical and functional changes in bronchoalveolar parameters induced by ambroxol treatment of chronic bronchitis. International Symposium Surfactant System of the Lung, Rome, 1983 March 2–4. In: Cosmi EV, Scarpelli EM (Hrsg). Pulmonary Surfactant System. Elsevier, Amsterdam 1983, S. 361–370.

    Google Scholar 

  8. 8.

    Dirksen H, et al. Mucociliary clearance in early simple chronic bronchitis. Eur J Respir Dis Suppl 1987; 153: 145–149.

    CAS  PubMed  Google Scholar 

  9. 9.

    Zhang ZQ, et al. Prevention of respiratory distress syndrome in preterm infants by antenatal ambroxol: a meta-analysis of randomized controlled trials. Am J Perinatol 2013; 30(7): 529–536.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Weiser T. Comparison of the effects of four Na+ channel analgesics on TTX-resistant Na+ currents in rat sensory neurons and recombinant Nav1.2 channels. Neurosci Lett 2006; 395(3): 179–184.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Weiser T, Wilson N. Inhibition of tetrodotoxin (TTX)-resistant and TTX-sensitive neuronal Na(+) channels by the secretolytic ambroxol. Mol Pharmacol 2002; 62(3): 433–438.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    de Mey C, et al. Efficacy and safety of ambroxol lozenges in the treatment of acute uncomplicated sore throat. EBM-based clinical documentation. Arzneimittelforschung 2008; 58(11): 557–568.

    PubMed  Google Scholar 

  13. 13.

    de Mey C, et al. Efficacy and safety of an oral ambroxol spray in the treatment of acute uncomplicated sore throat. Drug Res (Stuttg) 2015; 65(12): 658–667.

    Article  Google Scholar 

  14. 14.

    Chenot JF, Weber P, Friede T. Efficacy of ambroxol lozenges for pharyngitis: a meta-analysis. BMC Fam Pract 2014; 15: 45.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    European Medicines Agency (EMA). Revised assessment report. Ambroxol and bromhexine containing medicinal products. EMA/PRAC/800767/2015. Internet: http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Ambroxol_and_bromhexine_31/Recommendation_provided_by_Pharmacovigilance_Risk_Assessment_Committee/WC500184106.pdf (aufgerufen am 12.4.2016).

  16. 16.

    European medicines Agency (EMA). European Commission final conclusion on the Ambroxol and bromhexine Article-31 referral — Annex II — Scientific conclusion. 2016 Internet: http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Ambroxol_and_bromhexine_31/European_Commission_final_decision/WC500201290.pdf (aufgerufen am 12.4.2016).

  17. 17.

    Morice A, Kardos P. Comprehensive evidence-based review on European antitussives. BMJ Open Respir Res 2016; 3(1): e000137.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Poole P, Chong J, Cates CJ. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2015; 7: CD001287.

    Google Scholar 

  19. 19.

    Olivieri D, et al. Ambroxol for the prevention of chronic bronchitis exacerbations: long-term multicenter trial. Protective effect of ambroxol against winter semester exacerbations: a double-blind study versus placebo. Respiration 1987; 51 Suppl 1: 42–51.

    Google Scholar 

  20. 20.

    Cegla UH. Long-term therapy over 2 years with ambroxol (Mucosolvan) retard capsules in patients with chronic bronchitis. Results of a double-blind study of 180 patients. Prax Klin Pneumol 1988; 42(9): 715–721.

    CAS  PubMed  Google Scholar 

  21. 21.

    Malerba M, et al. Effect of twelve-months therapy with oral ambroxol in preventing exacerbations in patients with COPD. Double-blind, randomized, multicenter, placebo-controlled study (the AMETHIST Trial). Pulm Pharmacol Ther 2004; 17(1): 27–34.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Guyatt GH, et al. A controlled trial of ambroxol in chronic bronchitis. Chest 1987; 92(4): 618–620.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Matthys H, et al. Efficacy and tolerability of myrtol standardized in acute bronchitis. A multi-centre, randomised, double-blind, placebo-controlled parallel group clinical trial vs. cefuroxime and ambroxol. Arzneimittelforschung 2000; 50(8): 700–711.

    CAS  PubMed  Google Scholar 

  24. 24.

    Arzneimittelkommission der deutschen Ärzteschaft (AKdÄ). Handlungsleitlinie Atemwegsinfektionen aus Empfehlungen zur Therapie akuter Atemwegsinfektionen und der ambulant erworbenen Pneumonie (3. Auflage). 2013 Internet: http://www.akdae.de/Arzneimitteltherapie/TE/A-Z/PDF_Kurzversion/Atemwegsinfektionen_k.pdf (aufgerufen am 18.5.2016).

  25. 25.

    Gibbs BF. Differential modulation of IgE-dependent activation of human basophils by ambroxol and related secretolytic analogues. Int J Immunopathol Pharmacol 2009; 22(4): 919–927.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Dong C, et al. Anti-asthmatic agents alleviate pulmonary edema by upregulating AQP1 and AQP5 expression in the lungs of mice with OVA-induced asthma. Respir Physiol Neurobiol 2012; 181(1): 21–28.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zhi QM, Yang LT, Sun HC. Protective effect of ambroxol against paraquat-induced pulmonary fibrosis in rats. Intern Med 2011; 50(18): 1879–1887.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Wang Y, et al. Effects of Fengbaisan on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung tissue of rats with chronic obstructive pulmonary disease. Chin J Integr Med 2014; 20(3): 224–231.

    PubMed  Article  Google Scholar 

  29. 29.

    Yakoot M, Salem A, Omar AM. Clinical efficacy of farcosolvin syrup (ambroxol-theophylline-guaiphenesin mixture) in the treatment of acute exacerbation of chronic bronchitis. Int J Chron Obstruct Pulmon Dis 2010; 5: 251–256.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Sushko VO, et al. Optimization of chronic obstructive pulmonary disease treatment in clean-up workers of the Chornobyl NPP accident in the remote period after irradiation. Probl Radiac Med Radiobiol 2015; 20: 457–466.

    CAS  PubMed  Google Scholar 

  31. 31.

    Oda N, et al. Marked improvement in autoimmune pulmonary alveolar proteinosis with severe hypoxemia in a patient treated with ambroxol: a case report. J Med Case Rep 2015; 9: 100.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Nobata K, et al. Ambroxol for the prevention of acute upper respiratory disease. Clin Exp Med 2006; 6(2): 79–83.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Schulz M, et al. Safety and usage pattern of an over-the-counter ambroxol cough syrup: a community pharmacy-based cohort study. Int J Clin Pharmacol Ther 2006; 44(9): 409–421.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zhou Y, et al. Efficacy and safety of letosteine in the treatment of sputum thickening and expectoration difficulty in patients with respiratory diseases: a multicenter, randomized, double-masked, double dummy, positive drug parallel controlled trial. Pharmazie 2014; 69(11): 842–849.

    CAS  PubMed  Google Scholar 

  35. 35.

    Yang F. Oxygen-driving and atomized mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia. Pak J Pharm Sci 2015; 28(4 Suppl): 1477–1480.

    CAS  PubMed  Google Scholar 

  36. 36.

    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284(5418): 1318–1322.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Fick RB Jr, Sonoda F, Hornick DB. Emergence and persistence of Pseudomonas aeruginosa in the cystic fibrosis airway. Semin Respir Infect 1992; 7(3): 168–178.

    PubMed  Google Scholar 

  38. 38.

    Li F, et al. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms. Curr Microbiol 2008; 57(1): 1–7.

    PubMed  Article  Google Scholar 

  39. 39.

    Lu Q, et al. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. Int J Antimicrob Agents 2010; 36(3): 211–215.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Lee SH, et al. A novel inhaled multi-pronged attack against respiratory bacteria. Eur J Pharm Sci 2015; 70: 37–44.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Cheng C, et al. Ciprofloxacin plus erythromycin or ambroxol ameliorates endotracheal tube-associated Pseudomonas aeruginosa biofilms in a rat model. Pathol Res Pract 2015; 211(12): 982–988.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Lu Q, et al. Effects of combined treatment with ambroxol and ciprofloxacin on catheter-associated Pseudomonas aeruginosa biofilms in a rat model. Chemotherapy 2013; 59(1): 51–56.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Li F, et al. Effect of ambroxol on pneumonia caused by Pseudomonas aeruginosa with biofilm formation in an endotracheal intubation rat model. Chemotherapy 2011; 57(2): 173–180.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Zhang Y, et al. Synergy of ambroxol with vancomycin in elimination of catheter-related Staphylococcus epidermidis biofilm in vitro and in vivo. J Infect Chemother 2015; 21(11): 808–815.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Chen F, Zhang YX, Zhang CQ. Effect of ambroxol on the concentration of cefotaxime in the bronchoalveolar lavage fluid of rats with pulmonary fibrosis. Exp Ther Med 2015; 9(2): 539–542.

    CAS  PubMed  Google Scholar 

  46. 46.

    Hafez MM, et al. Activity of some mucolytics against bacterial adherence to mammalian cells. Appl Biochem Biotechnol 2009; 158(1): 97–112.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Pulcrano G, et al. Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm. FEMS Yeast Res 2012; 12(4): 430–438.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Rene HD, et al. Effects of ambroxol on Candida albicans growth and biofilm formation. Mycoses 2014; 57(4): 228–232.

    PubMed  Article  Google Scholar 

  49. 49.

    Yamaya M, et al. Ambroxol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Arch Pharm Res 2014; 37(4): 520–529.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Huang J, et al. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol. Biochimie 2014; 97: 92–103.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Peroni DG, et al. Ambroxol inhibits neutrophil respiratory burst activated by alpha chain integrin adhesion. Int J Immunopathol Pharmacol 2013; 26(4): 883–887.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ricciardolo FL, et al. Effect of ambroxol and beclomethasone on lipopolysaccharide-induced nitrosative stress in bronchial epithelial cells. Respiration 2015; 89(6): 572–582.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Gao X, et al. The protective effects of ambroxol in Pseudomonas aeruginosa-induced pneumonia in rats. Arch Med Sci 2011; 7(3): 405–413.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Chen Y, et al. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs. Environ Toxicol Pharmacol 2014; 38(1): 279–287.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Su X, et al. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A). Gene 2016; 577(1): 89–95.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Ulas MM, et al. Protective effect of ambroxol on pulmonary function after cardiopulmonary bypass. J Cardiovasc Pharmacol 2008; 52(6): 518–523.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Refai M, et al. Short-term perioperative treatment with ambroxol reduces pulmonary complications and hospital costs after pulmonary lobectomy: a randomized trial. Eur J Cardiothorac Surg 2009; 35(3): 469–473.

    PubMed  Article  Google Scholar 

  58. 58.

    Wang X, et al. Perioperative lung protection provided by high-dose ambroxol in patients with lung cancer. Cell Biochem Biophys 2015; 73(2): 281–284.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Xia DH, et al. The protective effects of ambroxol on radiation lung injury and influence on production of transforming growth factor beta1 and tumor necrosis factor alpha. Med Oncol 2010; 27(3): 697–701.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Dreger H, et al. Fast-track pulmonary conditioning before urgent cardiac surgery in patients with insufficiently treated chronic obstructive pulmonary disease. J Cardiovasc Surg (Torino) 2011; 52(4): 587–591.

    CAS  Google Scholar 

  61. 61.

    Li Q, Yao G, Zhu X. High-dose ambroxol reduces pulmonary complications in patients with acute cervical spinal cord injury after surgery. Neurocrit Care 2012; 16(2): 267–272.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Baranwal AK, Murthy AS, Singhi SC. High-dose oral ambroxol for early treatment of pulmonary acute respiratory distress syndrome: an exploratory, randomized, controlled pilot trial. J Trop Pediatr 2015; 61(5): 339–350.

    PubMed  Article  Google Scholar 

  63. 63.

    Wu X, et al. Meta-analysis of high doses of ambroxol treatment for acute lung injury/acute respiratory distress syndrome based on randomized controlled trials. J Clin Pharmacol 2014; 54(11): 1199–1206.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Chen XQ, et al. Effects of antenatal application of ambroxol and glucocorticoid on lung morphometry and signal transduction of bone morphogenetic protein in the fetal rat. Mol Med Rep 2012; 6(1): 63–68.

    CAS  PubMed  Google Scholar 

  65. 65.

    Elsayed HF, et al. Evaluation of the role of postnatal ambroxol in the prevention and treatment of respiratory distress syndrome in preterm neonates. Sultan Qaboos Univ Med J 2006; 6(2): 41–46.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fois G, et al. A new role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca(2)(+) release from acidic Ca(2)(+) stores. Cell Calcium 2015; 58(6): 628–637.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Hasegawa I, et al. Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia. Biochem Biophys Res Commun 2006; 343(2): 475–482.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Hussain S, et al. N-acetylcysteine and azithromycin affect the innate immune response in cystic fibrosis bronchial epithelial cells in vitro. Exp Lung Res 2015; 41(5): 251–260.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Varelogianni G, et al. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells. Cell Biol Int 2013; 37(11): 1149–1156.

    CAS  PubMed  Google Scholar 

  70. 70.

    Seagrave J, et al. Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells. Respir Res 2012; 13: 98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Kamei J, et al. Possible involvement of tetrodotoxin-resistant sodium channels in cough reflex. Eur J Pharmacol 2011; 652(1-3): 117–120.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Rohnert P, et al. Insufficient endogenous redox buffer capacity may underlie neuronal vulnerability to cerebral ischemia and reperfusion. J Neurosci Res 2012; 90(1): 193–202.

    PubMed  Article  Google Scholar 

  73. 73.

    Jiang K, et al. Ambroxol alleviates hepatic ischemia reperfusion injury by antioxidant and antiapoptotic pathways. Transplant Proc 2013; 45(6): 2439–2445.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Tewes F, et al. Steroid/mucokinetic hybrid nanoporous microparticles for pulmonary drug delivery. Eur J Pharm Biopharm 2013; 85(3 Pt A): 604–613.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Wiktorska JA, et al. Effects of certain antioxidants on lipid peroxidation process in lung homogenates of L thyroxine-receiving rats. Neuro Endocrinol Lett 2010; 31(1): 137–146.

    CAS  PubMed  Google Scholar 

  76. 76.

    Kim D, et al. Effects of oral mucolytics on tear film and ocular surface. Cornea 2013; 32(7): 933–938.

    PubMed  Article  Google Scholar 

  77. 77.

    Lapenta L, et al. Ambroxol-induced focal epileptic seizure. Clin Neuropharmacol 2014; 37(3): 84–87.

    PubMed  Article  Google Scholar 

  78. 78.

    Macchi A, Terranova P, Castelnuovo P. Recurrent acute rhinosinusitis: a single blind clinical study of N-acetylcysteine vs ambroxol associated to corticosteroid therapy. Int J Immunopathol Pharmacol 2012; 25(1): 207–217.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Maegawa GH, et al. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem 2009; 284(35): 23502–23516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Bendikov-Bar I, et al. Characterization of the ERAD process of the L444P mutant glucocerebrosidase variant. Blood Cells Mol Dis 2011; 46(1): 4–10.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Ambrosi G, et al. Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells. Neurobiol Dis 2015; 82: 235–242.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Lukas J, et al. Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol Ther 2015; 23(3): 456–464.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Babajani G, et al. Pharmacological chaperones facilitate the post-ER transport of recombinant N370S mutant beta-glucocerebrosidase in plant cells: evidence that N370S is a folding mutant. Mol Genet Metab 2012; 106(3): 323–329.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Bendikov-Bar I, et al. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol Dis 2013; 50(2): 141–145.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Suzuki T, et al. Expression of human Gaucher disease gene GBA generates neurodevelopmental defects and ER stress in Drosophila eye. PLoS One 2013; 8(8): e69147.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    McNeill A, et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 2014; 137(Pt 5): 1481–1495.

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Panicker LM, et al. Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development. Stem Cells 2014; 32(9): 2338–2349.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Mistry PK, et al. Understanding the natural history of Gaucher disease. Am J Hematol 2015; 90 Suppl 1: S6–11.

    Article  Google Scholar 

  89. 89.

    Luan Z, et al. The chaperone activity and toxicity of ambroxol on Gaucher cells and normal mice. Brain Dev 2013; 35(4): 317–322.

    PubMed  Article  Google Scholar 

  90. 90.

    Zimran A, Altarescu G, Elstein D. Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease. Blood Cells Mol Dis 2013; 50(2): 134–137.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Vestbo J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187(4): 347–365.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Fraschini F, et al. Effects of a mucolytic agent on the bioavailability of antibiotics in patients with chronic respiratory diseases. Curr Ther Res 1988; 43(4): 734–742.

    CAS  Google Scholar 

  93. 93.

    Gene R, et al. Influence of ambroxol on amoxicillin levels in bronchoalveolar lavage fluid. Arzneimittelforschung 1987; 37(8): 967–968.

    CAS  PubMed  Google Scholar 

  94. 94.

    Perez-Neria J, Garcia Rubi E. Ambroxol-amoxiciline fixed combination vs. amoxiciline in acute infectious respiratory conditions — Comparative study of antibiotic levels in bronchial mucus and blood. Compend Invest Clin Lat Am 1992; 12: 5–10.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Plomer PhD.

Additional information

This article is part of a supplement not sponsored by the industry.

Interessenkonflikt

Manuel Plomer ist Mitarbeiter der Sanofi-Aventis Deutschland GmbH, Frankfurt am Main. Justus de Zeeuw hat Honorare für Beratertätigkeit und Vortragstätigkeit sowie Erstattung von Reisekosten zu Kongressen durch die Boehringer Ingelheim Pharma GmbH & Co. KG sowie Honorare für Beratertätigkeit und Erstattung von Reisekosten zu Kongressen durch die Sanofi-Aventis Deutschland GmbH erhalten.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plomer, M., de Zeeuw, J. Mehr als ein Expektorans: neue wissenschaftliche Daten zu Ambroxol im Kontext der Behandlung bronchopulmonaler Erkrankungen. MMW - Fortschritte der Medizin 159, 22–33 (2017). https://doi.org/10.1007/s15006-017-9805-0

Download citation

Schlüsselwörter

  • Ambroxol
  • COPD
  • Bronchitis
  • Surfactant
  • Lysosomen
  • Biofilm

Key words

  • ambroxol
  • COPD
  • bronchitis
  • surfactant
  • lysosomes
  • biofilm